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Abstract

The goal of this thesis was to study the performance of three commercial object-

oriented database management systems. The commercial systems studied included: Itasca,

sold by Itasca Systems Incorporated; Matisse, sold by Intellitic International; and Object-

Store, sold by Object Design Incorporated. To examine performance of these database

management systems two benchmarks were run: the 001 benchmark and a new AFIT Sim-

ulation benchmark. The 001 benchmark was designed, implemented, and run on all three

database management systems. ObjectStore was our top performer on all configurations

of the 001 benchmark. The AFIT Simulation benchmark was designed, implemented,

and run on the ObjectStore database management system. A non-persistent version of

the benchmark was also created in the C++ programming language. There was minimal

performance overhead incurred due to the use of ObjectStore, especially when compared

to the functional benefits gained. We concluded that there are major differences between

the performance levels offered in current commercial object-oriented database management

systems. We also concluded that a programming language interface to an object-oriented

database management system should not be middle ground. Either it should be closely

tied to a specific language or not tied to a specific language at all.

xvlU



PERFORMANCE MEASUREMENT OF THREE COMMERCIAL

OBJECT-ORIENTED DATABASE

MANAGEMENT SYSTEMS

I. Introduction

1.1 Background

The next generation of database management systems, object-oriented database man-

agement systems, is starting to arrive on the market today. The various implementations

of these systems are incredibly diverse, much more diverse than relational database sys-

tems that have been dominant since the mid-1980s. All relational database management

systems are based on the relational data model. The relational data model is uniformly

used in different database implementations and is firmly based in mathematics (set theory

and first order predicate logic) [12]. In contrast, the emerging object-oriented data model

is neither uniformly implemented nor firmly based in mathematics. In fact, exactly what

traits are required for a database to claim that it is object-oriented is still under some

debate [2, 37]. This lack of agreement has created diversity in the capabilities of today's

object-oriented database management systems.

Despite this diversity, object-oriented DBMSs are indeed useful today. They are

bringing DBMS functionality to applications which traditionally have used only custom

file-based storage systems. Engineering applications, such as Computer Aided Design

(CAD) and Computer Aided Publishing (CAP), and also computer simulation, have not

widely used existing commercial DBMSs for several reasons. The most critical reason is

performance. Interactive engineering applications require database systems which are ten

to one hundred times faster than traditional DBMSs [9]. Some object-oriented DBMSs

can provide this much-needed level of performance.

Because performance is a critical requirement, it is imperative to be able to measure

the performance of object-oriented DBMSs. It is also necessary to focus performance

1



measurement on those object-oriented DBMS services which are the most critical. To

identify which services are the most critical, the applications which use object-oriented

DBMSs must be investigated. Once critical services have been identified, a benchmark can

be used as a tool to measure object-oriented DBMS performance.

A benchmark is a program used to quantitatively measure the performance of any

software or hardware system. Gray notes that a benchmark can be thought of as a workload

[14:1]. The hardware or software on which the benchmark is run is called the system under

test. The performance measure of a system under test on a benchmark could be a time to

completion (seconds) or a throughput metric (work/seconds). The performance measure-

ment can be combined with the price of the system under test to give a price/performance

ratio.

Good performance of a system under test on a benchmark does not indicate that

the system will perform well on every type of application. The benchmark is only a

valid yardstick for applications which are similar to the benchmark. For example, if you

are planning to build a software system which performs a great deal of floating-point

operations, then examining the results of floating-point operations benchmarks can aid in

your selection of a computer system. But if you are planning to do word processing on the

computer system, then the results of floating-point operations benchmarks will be useless.

Benchmarks allow comparison of different systems for an application without actually

having to build the application on all the different systems under consideration. When an

application is going to be very large, it is often impossible to build the complete application

to test different systems. Therefore, an important property of benchmarks is that they be

small, and thus reasonably simple to implement. To date, there are four existing object-

oriented DBMSs benchmarks:

* Simple Database Operations

* HyperModel

* Object Operations Version 1 (001)

* 007

2



The Simple Database Operations benchmark uses a database of authors and books to

measure performance on "simple, object-oriented queries that engineering database ap-

plications perform" [35:387]. The HyperModel benchmark is a more complex version of

the Simple Database Operations benchmark [15]. The 001 benchmark is a simpler, more

focused, version of the Simple Database Operations benchmark [9]. The 007 benchmark

is a new benchmark developed at the University of Wisconsin which attempts to be a more

complete measure of database performance than the 001 benchmark [7].

1.2 Problem Statement

The problem was that it was not known if the performance of the object-oriented

DBMSs available at AFIT was good enough to be used for research applications, especially

research in computer simulation. To determine this, it was necessary to benchmark the

performance of the three commercial object-oriented DBMSs available at AFIT. This prob-

lem was complicated by the diversity of object-oriented DBMS interfaces, the complexity

of the object-oriented DBMSs, the wide variety of applications to which object-oriented

DBMSs can be applied, and the question of what specific services simulation applications

require.

1.3 Objectives

The primary objective of this thesis was to measure the performance and functionality

of the three commercial object-oriented DBMS available at AFIT.

A second objective was to create a new or extended benchmark for simulation appli-

cations. This was necessary to provide simulation research projects a yardstick to evaluate

if any of the object-oriented DBMS available at AFIT would be useful to them.

1.4 Methodology

This research was conducted in four stages. In each stage the following three com-

mercial object-oriented DBMSs were tested:

* Itasca
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"* Matisse

"* ObjectStore

These three object-oriented DBMSs were selected because we believe that they represent

a reasonable cross-section of commercial object-oriented DBMS industry.

Itasca, Matisse, and ObjectStore were used in the following four stages of research:

1. Functional comparison of the three commercial object-oriented DBMSs.

2. Running the 001 benchmark on the three commercial object-oriented DBMSs.

3. Creating a specification for an object-oriented DBMS benchmark for the simulation

domain.

4. Running the simulation benchmark on the three commercial object-oriented DBMSs.

During stage one we investigated the functional capabilities of the Itasca, Matisse,

and ObjectStore DBMSs. The goal was to determine the functional differences between the

databases. Knowing the functional differences between the databases aided our analysis of

the benchmark results obtained later in this research. A secondary reason for investigating

the functional capabilities of the three commercial object-oriented DBMSs was to be able

to gain enough practical knowledge about the databases to implement the benchmarks

which were constructed in the following phases.

During stage two we created an implementation of the 001 benchmark for the Itasca,

Matisse, and ObjectStore DBMSs. To investigate the performance of Itasca, Matisse, and

ObjectStore, we first wanted to investigate their performance on a standard, well defined

benchmark. We selected the 001 benchmark for the following reasons:

" Maturity: The 001 benchmark is the most mature and completely specified of all

the object-oriented DBMS benchmarks. The benchmark evolved from an earlier

benchmark.

" Industry Acceptance: The 001 benchmark has wide acceptance from vendors in the

object-oriented DBMS industry, or at least we felt that was true at the start of this

research.
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* Reasonable Implementation Effort: To accomplish the implementation of a standard

benchmark, and a new benchmark in the simulation domain, the standard benchmark

must not require an unreasonable amount of time to implement.

Stage three involved creating a specification for a benchmark which would execute a

computer simulation environment inside an object-oriented DBMS. We examined litera-

ture about DBMS benchmarks and current simulations to define a simple simulation. The

benchmark was to be qualitative as well as quantitative. The benchmark investigated the

ability of the three commercial object-oriented DBMSs to support computer simulation.

Stage four implemented the simulation defined in the previous stage. A complete

implementation of the simulation benchmark was created for the Itasca, Matisse, and

ObjectStore DBMSs.

1.5 Materials and Equipment

For this research, two Sun SPARCstation 2 workstations were set up as test comput-

ers. The SPARCstation 2 is a general purpose engineering workstation. One workstation,

prowler, acted as the database server, and the other workstation, doc, as the client. The

database server was configured with two additional disk drives, one to hold the DBMS

software, and the other to hold the test databases. The benchmark runs were run during

the evening to avoid heavy network traffic during tests.

For this research we used version 2.2 of the Itasca object-oriented DBMS. Itasca

was originally developed as the Orion database system by Microelectronics and Computer

Technology Corporation. The Orion database was enhanced and is now sold by Itasca

Systems Incorporated of Minneapolis, Minnesota. We used version 2.2.0 of the Matisse

object-oriented DBMS. Matisse was developed by Intellitic International of France. We

also used version 2.0.1 of the ObjectStore object-oriented DBMS. ObjectStore was devel-

oped by Object Design Incorporated of Burlington, Massachusetts.
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1.6 Sequence of Presentation

In Chapter II we present a review of pertinent literature mi the area of DBMS bench-

marking and computer simulation. Chapter III investigates the functional capabilities

and differences between the Itasca, Matisse, and ObjectStore object-oriented DBMSs. In

Chapter IV we describe the analysis, design, and implementation of the 001 benchmark.

We also examine the problems encountered when working with the three object-oriented

DBMSs. Chapter V describes the simulation benchmark developed for this research and

describes our implementation of this benchmark. In Chapter VI we examine our results

from running the 001 benchmark and the simulation benchmark, and in Chapter VII

present some final conclusions and recommendations.
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II. Literature Review

In this chapter we review literature about DBMS benchmarking and computer simu-

lation. The review of DBMS benchmarks examines the capabilities of existing benchmarks.

The review of computer simulation examines the use of object-oriented DBMSs in simula-

tion environments today and the capabilities needed by simulation environments.

2.1 DBMS Benchmarks

DBMS benchmarks are a way to measure the performance and/or functionality of

a DBMS. They can also be used to find the lowest-cost DBMS and computer system

for a required job. The next four sections survey DBMS benchmarks. First, the criteria

for a good DBMS benchmark is covered. Second, the role of the only DBMS benchmark

standards organization, the Transaction Processing Performance Council, is examined.

Then eight important DBMS benchmarks are looked at. For each benchmark V e point

out the important strengths and weaknesses of the benchmark. Included are benchmarks

for on line transaction processing (OLTP), relational, and object-oriented DBMSs. The

following items about each benchmark are examined:

"* The benchmark problem domain

"* The benchmark database

"* The benchmark operations

"* The measurements (or results) of the benchmark

For more detailed information about any specific benchmark, the source documents on

that benchmark should be examined.

2.2 DBMS Benchmark Criteria

DBMS benchmarks are domain-specific benchmarks. These benchmarks attempt to

quantitatively measure the performance of a DBMS in a specific domain area, such as

decision support or OLTP. In [14] Gray proposes the following criteria for a good domain-

specific benchmark: relevant, portable, scalable, and simple.
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A benchmark must be relevant to be a useful yardstick for DBMS performance. For

example, if you are planning to use a DBMS for OLTP, then results of OLTP benchmarks

can aid in selection of a DBMS and a computer system. But if you are planning to use the

database for a decision support system, then OLTP benchmarks are not useful because

they are not relevant to the decision support domain.

A benchmark must be portable so that it can be run on several different DBMSs and

computer systems. Ideally, a benchmark should be able to be run on all the DBMSs which

support the domain (e.g., OLTP) for which it measures performance.

A benchmark should be scalable to large and small computer systems. As the ca-

pabilities of the computer system increase, the benchmark should "scale-up" to credibly

measure the performance of that computer system. Gray also notes that a benchmark

should scale-up to new types of computer systems (e.g. parallel computer systems) as

"computer performance and architecture evolve" [14:5].

A benchmark should be simple so it can be understood and easily implemented. If

a benchmark is as complex as your intended application, then there would be little point

to using the benchmark (your application could be used to measure DBMS performance).

A benchmark must be a small and simple program which can be used as a yardstick to

evaluate a system under test (a DBMS and a computer system).

DBMS benchmarks are not perfect and can be abused by vendors. Gray sites two ma-

jor benchmark abuses: "Benchmark Wars" and "Benchmarketing" [14]. The "Benchmark

Wars" occur between DBMS vendors trying to maintain top performance on a specific

benchmark. If one vendor loses to another, the losing vendor reruns the benchmark with

better "gurus." If the vendor succeeds in getting better results, the other vendor does

the same thing. This can continue to the point were modifications are being made to

the DBMS software specifically to make the benchmark run faster. "Benchmarketing" is

where a benchmark is modified (or a new benchmark is created) to allow a specific D , MS

product perform extremely well.
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2.3 DBMS Benchmark Standards Organiza-ions

The Transaction Processing Performance Council (TPC) is the only existing stan-

dards body for DBMS benchmarks. The TPC is a non-profit corporation founded in

August 1988. The mission of the TPC is "to define transaction processing and database

benchmarks and to disseminate objective, verifiable TPC performance data to the indus-

try" [39:1]. The TPC was created because of the lack of agreed upon benchmarks for

measuring DBMS performance. The TPC performs the following services:

e Defines Standard Benchmarks: The TPC has created three standard benchmarks to

date: TPC-A, TPC-B, and TPC-C (which will be examined in this chapter), and has

two more in the works: TPC-D (decision support domain) and TPC-E (enterprise

domain).

* Full Disclosure of Results: All companies which claim a performance measure on

z TPC benchmark must submit a detailed report to the TPC (called a full disclo-

sure report). This report documents the benchmark's compliance with the TPC

benchmark standard.

e Quarterly Report: The TPC publishes a quarterly report which contains summaries

of all the benchmark results published that quarter.

The TPC has 41 current members which includes both DBMS software and computer

hardware vendors.

2.4 Benchmarks for OLTP and Relational DBMSs

The following four benchmarks for OLTP and relational DBMSs are examined:

9 TPC Benchmark A (TPC-A)

e TPC Benchmark B (TPC-B)

o TPC Benchmark C (TPC-C)

* Wisconsin Benchmark
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The first three are the standard benchmarks defined by the TPC. The Wisconsin bench-

mark is a benchmark for complex relational queries. We provide detailed explanations of

the similar TPC-A and TPC-B benchmarks. TPC-C and the Wisconsin benchmark are

not covered in as much detail due to their complexity.

2-.4.1 TPC-A and TPC-B. The TPC-A benchmark was developed in 1989 by the

Transaction Processing Performance Council; TPC-B was developed in 1990. TPC-A and

TPC-B use the same database and transaction profile, ACID 1 requirements, and costing

formula. The major difference between the two benchmarks is that TPC-B allows the use

of transaction generation processes to create transactions, while TPC-A requires the use

of terminal emulation to create transactions. The TPC-A benchmark is a simple OLTP

benchmark, while the TPC-B benchmark may be thought of as a database stress test.

The specifications for TPC-A and TPC-B state they "exercise the system components

necessary to perform tasks associated with that class of on-line transaction processing

(OLTP) environments emphasizing update-intensive database services" [14]. Both TPC-A

and TPC-B are defined in terms of a banking application. The bank has one or more

branches and each branch has multiple tellers (each with a terminal to the database).

All the bank customers have an account. The final metric from the TPC-A and TPC-B

benchmarks is throughput as measured in transactions per second.

2.4.1.1 Benchmark Database. The database consists of four tables (or files):

Account, Branch, Teller, and History. The relationships between these tables is shown in

Figure 1. Figure 1 is an entity/relationship diagram for the database.

The Account table contains the following fields:

"* AccountJD (The key for the table)

"• Branch-ID (The branch where the account is held)

"* Account-Balance

The Branch table contains the following fields:

1Atomicity, Consistency, Isolation (or serializability), and Durability
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Figure 1. TPC-A and TPO-B Entity/Relationship Diagramn

* BranchID (The key for the table)

* BranchBalance

The Teller table contains the following fields:

* TelleriD (The key for the table)

* BranchID (The branch where the teller is located)

T Teller1Balance

The History table contains the following fields:

* Acc Fi•ivcD (Updated by transaction)

"* TeierhiD (Performed the transaction)

"* BranchJD (Associated with teller)

* Amount

"* TimeStamp (Time of the transaction)

The benchmark specification requires that all branches must have the same number of

tellers and that all branches must have the same number of accounts. The number of rows
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B3GI TRANSACTION
Update Account where AccouatID - Aid:

Read Account.Balance from Account
Set Account.Balance - AccountBalance + Delta
Write Accout..Balance to Account

Write to History:
Aid, Tid, Bid, Delta, Tiae.stamp

Update Teller where Teller.ID - Tid:
Set Teller.Balance - Teller.Balance + Delta
Write TellerBalance to Teller

Update Branch where Braach..ID - Bid:
Set BranchBalance - Branch-Balance + Delta
Write BranchBalance to Branch

COMIT TRAISACTIOI

Figure 2. TPC-A and TPC-B Transaction Profile

in each table is not a fixed value. It is scaled based upon the throughput rate for which

the test is configured.

2.4.1.2 Benchmark Operations. Only one transaction is performed on the

benchmark database. The transaction profile is shown in Figure 2. Aid (AccountID), Tid

(Teller.ID), and Bid (BranchID) are keys. For TPC-A, the Aid, Tid, Bid, and Delta are

read from a teller terminal and the transaction is processed. Then Aid, Tid, Bid, Delta,

and Account.Balance are written back to the terminal. For TPC-B, the Aid, Tid, Bid, and

Delta are provided by a driver, and only Account.Balance is returned to the driver after

the transaction has been processed. It is important to realize that the TPC-A benchmark

measures the time it takes messages to pass through the communication network to and

from the teller terminals while TPC-B does not.

2.4.1.3 Benchmark Measurements. TPC-A and TPC-B provide two impor-

tant metrics: a tps and a K$/tps. The tps is a throughput measurement which stands for

"transactions per second". To avoid confusion with other (older) similar benchmarks which

create a tps metric (i.e., DebitCredit and TP1 [1]), the TPC-A and TPC-B benchmarks

prefix the tps metrics. TPC-A uses "tpsA-Local" and "tpsA-Wide." "tpsA-Local" states

the test was run using a local communications network, and "tpsA-Wide" states the test

was run using a wide area communications network. TPC-B uses "tpsB" for its results.
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What is required to generate a valid tps rating for TPC-A and TPC-B is not obvious

and requires some explanation. The basic calculation is simple: to obtain a tps rating, the

number of transactions which started and completed during the test interval is divided by

the elapsed time of the test. But in order for the tps metric to be a valid for the TPC-A

or TPC-B benchmark, several requirements must be met. They are as follows:

* The database table sizes must be scaled properly

* The test interval must be at least 15 minutes (and no longer than an hour)

* 90% of the transactions must have less than a 2 second response time (to the terminal

for TPC-A, to the driver for TPC-B)

* Each terminal (for TPC-A) creates a new transaction (on average) every 10 seconds

First, the database table sizes must be scaled to the throughput goal of the test.

TPC-A and TPC-B are scaled based upon DBMS throughput. If a benchmark test is

trying to measure a throughput of 10 tps, then the database size must be scaled for that

level of throughput. A tps throughput measurement is only allowed to be as high as the

database table size allows. For each tps configured, the benchmark specification states

that the database tables must have the following number of rows:

Table Number of Rows

Account 100,000 rows
Teller 10 rows
Branch 1 row

In addition to the required table sizes, for TPC-A there must be 10 terminals for

each tps configured.

Second, the test must be run in a steady state for at least a time of 15 minutes and

no longer than one hour, but the test system must have enough resources to run the test

for a total of 8 hours.

Third, 90% of all transactions during the test must have a response time of under 2

seconds.

Example: Consider a TPC-A test system configured for 10 tps using a
local area network. To allow 10 tps the test database and computer system
must use a minimum of:
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Item Number
Account 1,000,000 rows
Teller 100 rows
Branch 10 rows
Terminals 100

The test on the system is run for 20i mtes and the 90th percentile response
time is 1.85 (below the 2 second requirement). During the 20 minutes suppose
11,261 transactions are started and committed. The tps rating would be 9.38
tpsA-Local (" ). Since this value is below 10 it is valid tps rating for TPC-\20-60

A. But if 13,204 transactions started and committed during the test, the tps
rating of 11 tps would be invalid. This is because 11 tpe is larger than the 10
tps throughput for which the test system was configured.D

The second measurement from TPC-A and TPC-B is the K$/tps. This value is ob-

tained by dividing the cost of the system by the measured tps rating. The benchmark

standard is very specific about what items are to be included in the cost of the com-

puter system. It includes cost of the computer hardware, terminals, communication lines,

database software, and maintenance.

Example: In the TPC-A test above (example 1), assume that the system
under test costs $140,000. The system had a throughput metric of 9.38 tpsA-
Local. The K$/tps metric would be 14.9 K$/tps (').0

These two benchmarks are widely used by DBMS vendors today. And TPC-A and

TPC-B summary results are regularly published in computer industry literature.

A major strength of the TPC-A and TPC-B benchmarks is their simplicity. These

benchmarks produce very simple results (tps measurements). Because of these simple

results it is important to recognize the limitations of the benchmarks. TPC-A is a useful

yardstick for simple OLTP performance capabilities and TPC-B provides a simple DBMS

stress test, but because of the simple transaction used in both benchmarks, they are of

absolutely no value for measuring how well a DBMS will perform on complex queries.

2.4.2 TPC-C. The TPC-C benchmark was developed in 1992 by the Transaction

Processing Performance Council. This benchmark was designed to simulate an OLTP

workload. It, like the TPC-A benchmark, is a useful yardstick for OLTP performance

capabilities. The TPC-C benchmark is much more complex than the TPC-A and TPC-B

benchmarks (it requires 111 pages for its specification, while TPC-A and TPC-B require 39
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pages and 38 pages, respectively). TPC-C simulates a business where terminal operators

execute transactions against a database. The TPC-C benchmark is specified to exercise

the following components of an OLTP database system [381:

"* The simultaneous execution of multiple transaction types that span a breadth of

complexity.

"* On-line and deferred transaction execution modes

"* Multiple on-line terminal sessions

"* Moderate system and application execution time

"* Significant disk input/output

"* Transaction integrity (ACID properties)

"* Non-uniform distribution of data access through primary and secondary keys

"* Databases consisting of many tables with a wide variety of sizes, attributes, and

relationships

"* Contention on data access and update

2.4•.2.1 Benchmark Database. The TPC-C benchmark database represents

"a wholesale supplier with several sales districts. The supplier has warehouses which cover

"a group of sales districts. Each sales district has a group of customers. For the TPC-C

benchmark the following rules are specified for the benchmark database:

"• Each regional warehouse covers 10 districts

"* Each district serves 3,000 customers

"• All warehouses maintain stocks for the 100,000 items sold by the company

"* The database size is scaled by adding more warehouses (all the other cardinalities

are fixed)

The benchmark database size is scaled based upon the throughput of the DBMS (like

TPC-A and TPC-B).
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2.4.2.2 Benchmark Operations. The TPC-C benchmark operations are

based around the types of transactions which would be typical in an order-entry environ-

ment. The following transactions are run on the TPC-C database:

1. New-Order Transaction: This transaction enters a complete order in a single database

transaction.

2. Payment Transaction: This transaction updates a customers balance and reflects the

payment on district and warehouse sales statistics

3. Order-Status Transaction: This transaction queries the status of a customer's last

order.

4. Delivery Transaction: This transaction processes 10 new orders (the orders are de-

livered).

5. Stock-Level Transaction: This transaction determines the number of items that have

a stock level below a threshold level.

All of these transactions are executed during the TPC-C benchmark. They are done in

the frequency which would be expected in a real business.

2.4.2.3 Benchmark Measurements. The final metric from the TPC-C

benchmark is throughput in transactions per minute. The metric is called "tpmC." As

in TPC-A and TPC-B, the reported throughput may not exceed the maximum allowed by

the database size.

The complexity of the TPC-C benchmark is both a strength and a weakness. It

is a strength because the benchmark is more realistic (for an OLTP application), and a

weakness because it makes the results of the benchmark more difficult to interpret. As

with all the TPC benchmarks, the standardization of the benchmark is a strength. The

benchmark leaves little flexibility in implementation (so it is less likely to be abused by

vendors). A weakness of this benchmark is the single throughput (tpmC) which is generally

reported (in summaries of results), but more detailed information is required in the fun

disclosure report.
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2.4.3 The Wisconsin Benchmark. The Wisconsin Benchmark was developed by

Bitton, DeWitt, and Turbyfill in 1983 [14]. This benchmark measures DBMS performance

on a variety of complex relational queries. 32 queries are done on the benchmark database

and each query attempts to measure DBMS performance on one, or a group of, basic

relational operators (i.e., selection, projection, or join).

2.4.3.1 Benchmark Database. The benchmark database consists of three

tables. The first table contains 1,000 tuples and is named ONEKTUP. The other two tables

contain 10,000 tuples each and are named TENKTUP1 and TENKTUP2. The fields in the tables

are all the same and are synthetically generated relations. DeWitt states that this choice

was made to make the database scalable and to "permit systematic benchmarking" [14:122].

2.4.3.2 Benchmark Operations. The benchmark measures performance on

the following types of queries:

1. Selection Que- ies

2. Join Queries

3. Projection Queries

4. Aggregate Queries

5. Update Queries

There are a total of 32 queries in the benchmark specification.

2.4.3.3 Benchmark Measurements. For each of the 32 queries in the bench-

mark, elapsed time is used as the performance metric. This is the wall clock time from

when the query was started until it completes.

This benchmark had a major impact on commercial DBMSs when it was created

(1983). As DeWitt states, "by pointing out the performance warts of each system, vendors

were forced to significantly improve their systems in order to remain competitive" [14:120].

For example, at the time the benchmark was released, nested loops was the only join

method provided by the ORACLE and IDM 500 DBMSs [14]. DeWitt reports that "each

required over five hours to execute" one of the benchmark join queries [14:134].
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The Wisconsin benchmark currently is being used to evaluate the performance of

database systems running on parallel processors [14].

The major strength of this benchmark is its focus on query performance. However,

one has to have some education in relational database theory to understand the results. If

a user doesn't understand how a selection query is different from a join query, the results

from this benchmark will not be useful. But for domains, such as decision support, where

complex queries are necessary, this benchmark can be helpful in evaluating the performance

of a DBMS.

2.5 Benchmarks for Object-Oriented DBMSs

Though performance is important to most applications which could use object-

oriented DBMSs, Cattell maintains that little work has been done in the area [8]. Only the

following four benchmarks have been proposed for object-oriented DBMSs (none of which

are TPC standards):

"* Simple Database Operations Benchmark

"* Object Operations Version 1 (001) Benchmark

"* HyperModel Benchmark

.007

The Simple Database Operations benchmark was developed first. The HyperModel and

001 benchmarks are both based on the Simple Database Operations benchmark, but

HyperModel is a more complex benchmark than 001. The 007 benchmark is a new

benchmark created at the University of Wisconsin (the creators of the Wisconsin Bench-

mark). Figure 3 shows the evolution of object-oriented DBMS benchmarks. Each of these

benchmarks is examined next.

2.5.1 Simple Database Operations Benchmark. This benchmark was proposed

in 1987 by Rubenstein, Kubicar, and Cattell [35]. They created the benchmark because

existing relational DBMS benchmarks were poor measures for the applications they were

working on. They needed a measure of "response time for simple queries" [35:387].
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Figure 3. Evolution of Object-Oriented DBMS Benchmarks

As an example, consider drawing a polygon on a computer screen where the lines

which make up the polygon are stored in the DBMS. The program would start by querying

the database for the first line in the polygon. When that line was returned, it would be

drawn on the screen. This process would be repeated for each line in the polygon. In a

complex CAD drawing there could be hundreds of thousands of lines. This is the type

of application for which Rubenstein, Kubicar, and Cattell were interested in providing

a benchmark, but they used a more comprehensible database of documents and authors

rather than polygons for their benchmark.

2.5.1.1 Benchmark Database. The benchmark uses a database of document

and person records. Documents are related to people by a relationship called author. 5,000

documents, 20,000 persons, and 15,000 author relationships are created in the benchmark

database. To allow the benchmark to "scale up" to larger databases, the benchmark

proposes the same measurements also be run on a database ten times and one hundred

times larger [35:389].
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2.5.1.2 Benchmark Operations. For each different size database, the per-

formance of the following seven different operations is measured:

1. Name Lookup: Find the name of a single person.

2. Range Lookup: Find the names of people with birth dates in a particular 10-day

period.

3. Group Lookup: Given a random document, find all authors for that document.

4. Reference Lookup: Find the name and birth date for a single author of a random

document.

5. Record Insert: Create a new author record and add it to the database.

6. Sequential Scan: Retrieve, one at a time, the title of every document in the database.

7. Database Open: Perform all the operations necessary to make the DBMS available

to run an application program.

2.5.1.3 Benchmark Measurements. For each of the benchmark operations

the performance measurement is the response time of the operation [35]. The response

time is the elapsed time from when the operation is started until it completes.

The scaling of the benchmark database in this benchmark is limited to only three

sizes. This is a weakness of this benchmark and most object-oriented DBMS benchmarks.

Most of these benchmarks intend to measure performance of the object-oriented DBMS

when the entire database can fit in memory, and then when it cannot fit in memory. The

main strength of this benchmark is that it is quite simple, but it has not turned out to be

very popular. It has also been overshadowed by the 001 benchmark.

2.5.2 HyperModel Benchmark. This benchmark was proposed in 1990 by Berre

and Anderson [15:75-91]. The HyperModel benchmark is a very complex benchmark for

object-oriented DBMSs because it measures a large number of different operations. The

creators of the HyperModel benchmark concluded that the Simple Database Operations

benchmark did not measure enough database operations on a sufficiently complex database

to be representative of a wide variety of engineering applications [15].
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2.5.2.1 Benchmark Database. The HyperModel benchmark uses a data-

base which represents hypertext. Hypertext consists of nodes and links. Nodes contain

information such as text, graphics, or sound. Links maintain relationships between pieces

of information. Berre and Anderson state that "Hypertext has been proposed as a good

model for use in Computer Aided Software Engineering (CASE) because it is possible to

store software and documentation as hypertext" [15:75].

2.5.2.2 Benchmark Operations. The following operations are measured in

the HyperModel benchmark:

1. Name Lookup: A lookup iE performed on a hypertext node.

2. Range Lookup: A range of hypertext nodes is looked up.

3. Group Lookup and Reference Lookup: Same as the Simple Database Operations

benchmark, but it is extended to one-to-many, many-to-many, and many-to-many

with attribute relationships as well.

4. Sequential Scan: Same as the Simple Database Operations benchmark. The entire

database is retrieved.

5. Closure Traversal: Starting at a random hypertext node, find all the nodes transi-

tively reachable by a relationship. This is done for all the types of relationships in

the database.

6. Closure Operations: The same as closure traversal, but an operation will be per-

formed at each node found during the traversal.

7. Editing: This operation changes the text found at a hypertext node, then changes it

back to its previous value. The operation is also done for a hypertext node with a

graphics image (picture) stored in it.

8. Create and Delete: This operation creates a node and then deletes it.

9. Open and Close: Same as Simple Database Operations benchmark, but database

close time is also measured.

21



2.5.2.3 Benchmark Measurements. The performance measurement is the

elapsed time of each benchmark operation. The HyperModel benchmark specifies that each

operation must be run 50 times and that the database must be shutdown and restarted

before each new type of operation is started [15].

The realistic database used in the benchmark and the realism gained by the complex-

ity of the benchmark operations are this benchmarks greatest strengths. The benchmark's

complexity is also a weakness. The complexity makes the benchmark difficult to implement

and the results difficult to understand. This benchmark has not proved to be very popular

with object-oriented DBMS vendors.

2.5.3 Object Operations Version 1 (001). This benchmark was proposed in

1991 by Cattell and Skeen of Sun Microsystems [9]. It is simpler than the Simple Data-

base Operations benchmark (on which Cattell also worked) and is much simpler than the

HyperModel benchmark. Cattell and Skeen admit the benchmark is representative of a

smaller group of engineering applications than the HyperModel benchmark, but state they

were trying to create a "generic benchmark" [9:2-3]. This has some merit because the

001 benchmark is much simpler to implement than the HyperModel benchmark. The

001 benchmark is also known as the "Cattell" or "Sun" benchmark.

2.5.3.1 Benchmark Database. The database used for 001 consists of con-

nected parts. A connection goes from one part object to another part object, and a single

part object may have several to and from connections. For each part, three connections

to other parts are created. These connections must ensure "locality of reference" by con-

necting parts to parts which are closest to them (Part-id numbers which are numerically

close are defined to be close together) [9:4-5].

001 measures performance on two different size databases, called small and large.

The small database consists of 20,000 parts and 60,000 connections. The large database

is ten times larger than the small, hence having 200,000 parts and 600,000 connections.

The authors of 001 intended that the small database would fit in the database manage-

ment system's memory buffer (or working set), while the large database would not fit in
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the memory buffer. They state that fitting in the working set is the "most important

distinction" between the small and large databases [9:5-4].

2.5.3.2 Benchmark Operations. The 001 benchmark measures the perfor-

mance of the following three operations:

1. Lookup: Lookup 1,000 (10,000 for the large database) parts in the database.

2. Traversal: Pick a single part then find all parts connected to it (directly or indirectly),

up to seven levels deep.

3. Insert: Create 100 (1,000 for the large database) new parts with three connections

per part.

During each of the measurements it is required that a null procedure (representing

some work done in an application program) in a programming language be called at each

step. This requirement makes the benchmark "interactive" [9:7].

The benchmark forbids any of the operations being done as a single database call,

which is how a relational DBMS might perform the operations.

A unique feature of the 001 benchmark is that it must be run remotely. This means

that the database must reside on one computer (server), and the benchmark application

(client) must reside on another. The two computers are connected via a network. Figure 4

shows this configuration. The authors state that a remote database configuration is "the

most realistic representation of engineering and office databases" [9:5].

The three 001 benchmark measurements are run ten times. The results of the first

run are the "cold start results," and the "asymptotic best times" on the remaining runs

are the "warm start results" [9:8].

The 001 benchmark has been very popular with object-oriented DBMS vendors

(it has become a de-facto standard), probably in large part due to its simplicity. This

benchmark's simplicity and its attempt to measure the effectiveness of client caching are

its strengths. Its poor coverage of the performance of a large number of the functional

elements required in an object-oriented DBMS is its major weakness.
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Database Application Program

Figure 4. Remote or Client-Server Database Configuration

2.5.4 007. The 007 benchmark was proposed by Carey, DeWitt, and Naughton

in 1993. The work to develop this benchmark was done at the University of Wisconsin-

Madison. The 007 benchmark is proposed as a "comprehensive" performance profile of

an object-oriented DBMS [7:1]. One of the interesting features of the 007 benchmark

is that it evaluates the performance of the query processor of the object-oriented DBMS

(if it has one). The 007 benchmark is more complex than the 001 benchmark but it is

more focused than the HyperModel benchmark. The 007 benchmark produces a set of

numbers as its output metrics rather than a single metric.

2.5.4.1 Benchmark Database. The benchmark database used for the 007

benchmark is very complex. The database consists of a complex object hierarchy. The

levels of the hierarchy (from bottom to top) are listed below:

1. Atomic Parts

2. Composite Parts composed of atomic parts with associated documentation objects

3. Base Assemblies composed of composite parts

4. Complex Assemblies composed of base assemblies

5. Design Objects composed of complex assemblies
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6. Modules composed of design objects with associated documentation objects

Each object class in the database has several discrete attributes and connections between

classes are set up in the database. The 007 benchmark scales the database to three

different sizes: small, medium, and large.

2.5.4.2 Benchmark Operations. The benchmark measures performance on

the following types of operations:

1. Traversals

2. Queries

3. Structural Modification Operations

2.5.4.3 Benchmark Measurements. The performance measurement is the

elapsed time (or response time) of each benchmark operation.

This benchmark is very new and it remains to be seen if it will become popular (spe-

cific parts of the benchmark may become popular with vendors if their product performs

well on them). The benchmark is very complex and the results will probably have to be

accompanied with a full description of the benchmark operations (which was done in [7]).

The strength of this benchmark is that it is very comprehensive in its measurements. This

benchmark measures performance on a wide spectrum of object-oriented DBMS function-

ality.

We have reviewed eight benchmarks which are used for the performance measurement

of DBMSs. For each benchmark the database, operations, and results used by the database

have been discussed. Table 1 summarizes the benchmarks covered. DBMS benchmarks

can be a useful tool for evaluating commercial DBMSs, but they can also be abused. A

good understanding of DBMS benchmarks can help one to know when and when not to

use a benchmark.
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Table 1. DBMS Benchmark Summary

Benchmark Domain Simplicity TPC Standard

TPC-A Simple OLTP Simple Yes
TPC-B DBMS Stress Test Simple Yes
TPC-C Complex OLTP Complex Yes
Wisconsin Query Performance Complex No
Simple Database Operations Object Operations Simple No
HyperModel Object Operations Complex No
001 Object Operations Simple No
007 Object Operations Complex No

2.6 Computer Simulation

In the next two sections we examine computer simulation, including the use of object-

oriented DBMSs in computer simulation systems and simulation environments. The ma-

terial examined contributed to our design of the simulation benchmark.

2.7 Current Simulation Systems Using Object-Oriented DBMSs

In this section we examine the experiences of two attempts at using an object-oriented

DBMS for a simulation system: one using the C++ language with an object-oriented

DBMS, and one developed using the Ada language. Both of these systems previously used

a relational DBMS, specifically the Oracle relational DBMS, for data management.

2.7.1 Visual Intelligence and Electronic Warfare Simulation Workbench. Woyna,

et al., developed a simulation system which used the Versant object-oriented DBMS [40].

The simulation system is called the Visual Intelligence and Electronic Warfare Simulation

(VIEWS) Workbench software system. VIEWS was designed to enable analysts to build

detailed intelligence and electronic warfare scenarios. The scenarios created by VIEWS are

used to drive high-resolution intelligence and electronic warfare models. VIEWS had been

created using a relational DBMS and then modified to use the Versant object-oriented

DBMS. The builders of VIEWS cited the following advantages of the object-oriented

DBMS over the relational DBMS for their project:
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"* Better Schema Support: Use of the relational DBMS required that the C++ struc-

tures be "flattened" into relational tables. The object-oriented DBMS directly cap-

tured the schema from the C++ application code. Also it was noted that the trans-

lation between the relational tables to the internal C++ representation required

extensive source code which was unnecessary for the object-oriented DBMS.

"* Better Application Language Interface: Use of the relational DBMS required devel-

oper knowledge of two languages: C++ and SQL. The object-oriented DBMS did

not require developer knowledge of SQL.

"* Better Application Performance: Reconstructing the complex objects in the C++

program from the normalized relational DBMS tables required complex joins be-

tween many tables which was expensive in terms of application performance. The

direct representation of C++ objects and the client cache available in the object-

oriented DBMS provided improvements in performance 10 to 100 times faster than

the relational DBMS provided [40].

"* Additional Features: The object-oriented DBMS provided additional features such

as long transactions and versioning of objects which were not available from the

relational DBMS.

It took approximately 10 person-days of effort to convert the 30,000 lines of C++ code

in the VIEWS system to the Versant object-oriented DBMS. No major porting problems

were noted. The conclusion of the authors is that the use of the object-oriented DBMS

in the VIEWS simulation system was a "far better approach" than using a relational

DBMS [40:501].

2.7.2 Saber Wargame. Mathias extended a wargame simulation to work with an

object-oriented DBMS [251. The wargame, called Saber, was developed at the Air Force

Institute of Technology and originally interfaced with flat-files and the Oracle relational

DBMS. Mathias replaced the flat-file and relational DBMS interfaces with an interface to

the Science Applications International Corporation's (SAIC) object-oriented DBMS. The

SAIC object-oriented DBMS was developed for the US Air Force to replace an existing

COBOL-based data management system.
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Saber uses the SAIC object-oriented DBMS as a data repository, but simulation

execution is not done persistently and no transaction model exists to allow concurrent

access to executing simulation data. Mathias found the performance of the SAIC object-

oriented DBMS to be slower than expected during large data transfers, and concluded that

it seemed "ill-advised" to blindly replace an relational DBMS or fiat-file system with an

object-oriented DBMS [25].

2.8 Simulation Environments

Rooks proposes that simulation systems are composed of a three-level hierarchy [34].

Rooks' hierarchy is shown in Figure 5. Models are created in a simulation language, which

is a part of a simulation system. Rooks proposes that although most simulation systems

are created around a simulation language, the attention should be around the simulation

system. He compares the design of a simulation system to that of a graphical user interface

(GUI). The GUI may not be perfectly suited for each application it supports, but the

imperfections are forgivable when compared to the amount of redundant effort saved in

the development of each application. Rook proposes the following factors for evaluation of

a good simulation system: generality, completeness, suitability, and flexibility 134].

Pidd states that computer simulation systems have evolved from custom simulation

program creation (where the simulation program embodied the simulation logic and hard-

coded the data) towards the use of data-driven simulations [32]. Data-driven simulations

reduce the time and effort required to simulate a system because they do not require a

traditional programming effort. Pidd's emphasis, like Rooks', is on reducing the amount

of redundant effort required during simulation development. Pidd describes two different

types of data-driven simulation: general purpose data-driven simulators and domain specific

data-driven simulators [32]. General purpose data-driven simulation systems provide the

following:

"* A pre-programmed simulation model

"* A model suited to a wide range of applications

"* No traditional programming by the user
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Sirmulaion ts

Figure 5. Three-Level Hierarchy of a Simulation System

"* User provided data to the simulator

"* Numerical, logical, or textual simulation data

Domain specific data-driven simulators attempt to provide the advantages of a general

purpose data-driven simulation system, but are more specific to a single problem domain.

A domain specific data-driven simulator must contain simulation logic for all anticipated

instances of the domain. Pidd proposes that all data-driven simulations must contain the

modules shown in Figure 6 [32].

2.8.1 Post-Processing and Simulation Graphics. Hurrion reports that graphical

displays have been used in discrete-event simulation systems since the mid-1970s [31].

Hurrion notes that two different approaches to graphical display output have developed:

e Post-Processing or Playback Graphics: This technique animates the dynamics of a

simulation but does not allow user interaction while the simulation is running. This

technique is the most common technique used in the United States.
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Figure 6. Components of a Data-Driven Simulator

9 Visual Interactive Simulation: This technique is similar to the previous technique,

but allows a user to interact with the running simulation. This technique is in

common practice in the UK.

Hurrion also describes two different types of simulation graphics output: character

graphics and high-resolution bit-mapped graphics [31]. Character graphics use repeated

drawing and erasing of characters on a text screen to animate a simulation model. High-

resolution bit-mapped graphics produce superior quality animation of simulation models,

including three-dimensional animation. Hurrion notes that despite the visual superiority

of bit-mapped graphics, a substantial amount of time is required to create a quality bit-

mapped graphics animated display.

2.8.2 The Joint Modeling and Simulation System. The Joint Modeling and

Simulation System (J-MASS) is being developed by the Department of Defense (DOD)

as a standard architecture for modeling and simulation [6]. J-MASS provides a modeling
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system designed to support the simulation requirements of the DOD. J-MASS consists of

two major parts: the simulation support environment and the modeling library.

The simulation support environment (SSE) is a work environment designed to assist

a modeler in five functions:

"* Develop Model Components: This portion of J-MASS allows a model developer to

create individual components which are compliant with the J-MASS architecture.

For example, a model developer could develop an engine component and an avionics

component for an aircraft evaluation model.

"* Assemble Model Components: This portion of the SSE allows the composition of

model components, developed previously and stored in the modeling library, into

new components. For example, an aircraft component could be constructed from an

engine and avionics component stored in the modeling library.

"* Configure Simulation Scenarios: This portion of J-MASS allows the developer to

place a model in a simulation scenario. At this phase, specific locations and terrain

may be specified for a simulation.

" Execute Simulations: This function of J-MASS allows execution of a simulation. The

results of the simulation are journaled and made available for analysis during post-

processing. The specific results to be collected for post-processing are specified by

placing "probe" points in the model [6].

"• Post-Processing: This function allows the J-MASS user to analyize the output of a

single simulation run or several simulation runs.

The modeling library provides J-MASS users with a source of validated modeling

components. Users of J-MASS may modify the existing components in the modeling

library by changing attributes of the model components. The modeling library provides a

model reuse repository for J-MASS [21].

2.8.3 J-MASS Data Management. The current version of the J-MASS system

uses flat-files for data management. J-MASS is currently being expanded to use a DBMS,
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but the DBMS use is limited to the model development, assembly, configuration, and post-

processing functions of the system. J-MASS does not currently plan to allow execution

of the simulation in a persistent environment, allowing concurrent access to executing

simulation data. Current J-MASS simulations are developed, compiled, and executed as

Ada programs.

2.9 Summary

In this chapter we have reviewed current literature about DBMS benchmarks and

computer simulation. In Chapter III we examine the functional capabilities of the three

commercial object-oriented DBMS used for this research.
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III. Object-Oriented DBMS Functional Comparison

In this chapter we examine the functional capabilities of the Itasca, Matisse, and

ObjectStore DBMSs. After an overview of the three DBMSs, we examine several func-

tional areas which are thought, in current literature, to be important for an object-oriented

DBMS to support [2, 4, 8, 37]. We examine transaction properties, locking and concur-

rency control, security authorization, query capabilities, distributed database capabilities,

programming-language integration, and architecture. The topics we examine in this chap-

ter are far from exhaustive, but catalog the areas encountered during this research effort.

3.1 DBMS Overview

We selected the Itasca, Matisse, and ObjectStore DBMSs for our research because

they represent a cross-section of the commercial object-oriented DBMS industry. Table 2

shows the estimated 1993 market share of various companies in the object-oriented DBMS

industry [33]. The company names of the DBMSs we are using are set in italics. Object-

Store leads the object-oriented DBMS industry with a 35% market share. Matisse holds a

solid 5% market share, while Itasca (which is a young company) holds a 2% market share.

Cattell in [8] describes the ObjectStore and Itasca DBMSs as object-oriented database

programming languages. This class of object-oriented DBMSs extend a programming lan-

guage with databases capabilities. The ObjectStore DBMS extends the C++ programming

language, while the Itasca DBMS extends the Lisp programming language.

The Matisse DBMS is not examined by Cattell in [81, but would roughly fall into two

categories: object manager and database system generator. At the lowest level, Matisse

acts as an object manager. It provides no query language, and has a very basic data model.

Through the use of data model templates, Matisse acts as a database system generator.

A data model template tailors the database to a specific data model. Creation of these

templates is difficult, and certainly not automated, but provides some of the capabilities

of a database system generator.
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Table 2. Estimated 1993 Market Share of Object-Oriented DBMS Companies [33]

lAnnual RevenueI

Company (in millions) Market Share

Object Design $20.4 35%
Servio $7.3 13%
Objectivity $6.6 11%
Versant $5.9 10%
Ontos $3.0 5%
Intellitic $2.6 5%
BKS $2.7 5%
02 Technology $1.9 3%
HP $1.8 3%
Itasca $1.2 2%
DEC $1.1 2%
UniSQL $1.1 2%
Other 4%

3.2 1Transaction Properties

The three commercial object-oriented DBMSs examined in this research support the

concept of a transaction. This section examines the support the three databases provide

for ACID transactions, long transactions, nested transactions, and nonblocking read-only

transactions.

3.2.1 ACID Requirements. Itasca, Matisse, and ObjectStore support transac-

tions which pass the ACID test: atomicity, consistency, isolation, and durability. The

ACID requirements for transactions are the accepted norm for all of today's relational

DBMSs. The TPC benchmarks require that all transactions meet the ACID test.

3.2.2 Long Transactions. Support for long transactions differs between the three

databases. Itasca and ObjectStore provide support for long transactions via a version

system. Versioned objects are checked out into work areas. Matisse does not provide

support for long transactions.

3.2.2.1 Itasca. The Itasca DBMS supports long transactions through ver-

sion management. Objects are worked on in a work area called a private database. When a
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user wants to work with a group of objects for a long period of time, they are checked out

of the Itasca shared database into the user's private database. This checkout creates a new

version of all the objects checked out in the user's private database. In the current Itasca

implementation, the new version is a copy of all the objects, not a delta, so a substantial

amount of disk space may be required for this operation. After check out, the objects

which remain in the shared database become read only. When the user is finished with

work, the objects in the private database are checked back into the shared database, and

are now available to other users.

3.2.2.2 ObjectStore. The ObjectStore DBMS also supports long transac-

tions through version management. To work on a group of objects for a long period of

time in ObjectStore, the objects are grouped into a configuration and checked out into a

workspace. The check out of the configuration creates a private version of all the objects in

the configuration. When the user is finished with work on the configuration it is returned,

or checked in, to the workspace from which it came.

ObjectStore allows more than one user to check out a version of a configuration. If

several different versions of the configuration have been created, then the versions must be

merged. ObjectStore provides support for version merging.

In an ObjectStore database, every object inside a configuration has a version history

which describes all the versions of an object which have been created. The past versions of

the version history are able to be read, but cannot be changed. The configuration groups

objects together as a unit for versioning. A configuration is also the unit of concurrency

control, so granularity for locking must be taken into account in the design of configura-

tions. When a new version of a configuration is created, a new version of all the objects in

the configuration is created. ObjectStore minimizes the storage overhead required for this

operation by only storing the differences, or deltas, between database pages which make

up the configuration [28].

ObjectStore provides workspaces to allow organization of work, and to allow work on

a distinct version of a configuration. The workspaces in ObjectStore form a parent/child

hierarchy of arbitrary depth. The top node of the tree is called the global workspace. The
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workspace hierarchy is created based upon the needs of the workgroup which it is designed

to support.

3.2.2.3 Matisse. The Matisse object-oriented services application program-

ming interface (API) does not provide support for long transactions [19]. Matisse provides

a version management system but it is limited to creating object versions in a linear man-

ner. New versions of an object are always created from the most recent version and no

"forking" of the version tree is allowed. Matisse support informed us that this capability

will be available in version 2.3 of the Matisse DBMS.

3.2.3 Nested Transactions. Nested transactions are useful in an application where

a single session may contain several individual changes to data. Each individual change

may be committed or aborted and then the entire session may be committed or aborted.

An abort of the session would abort all the individual changes [8]. Only ObjectStore and

Itasca support nested transactions at this time.

The ObjectStore DBMS provides support for nested transactions. In ObjectStore,

transactions may be freely nested. The inner transactions depend upon the outer trans-

action to determine if they are committed. The Itasca DBMS provides support for nested

transactions through database sessions. An Itasca database session is a sequence of trans-

actions. Itasca sessions may be created and destroyed in a "stack-like" manner [13:39]. The

Matisse object-oriented services API does not provide support for nested transactions.

3.2-.4 Non-Blocking Read-Only Transactions. The Matisse DBMS provides a

unique feature due to its use of intrinsic versioning. The Matisse DBMS allows an ap-

plication to perform an "as of" transaction. The transaction is a non-blocking read-only

transaction which reads the state of the database at a specific logical database time. The

transaction reads the version of the object "as of" the logical database time specified, and

since (under intrinsic versioning) a new version of the object will be created if another

transaction changes the object, no locking is required.
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ObjectStore and Itasca also allow read-only access to previous versions of objects.

But the application must have created, and be responsible for managing those versions.

New versions are not created every time an object is changed, as in Matisse.

3.3 Locking and Concurrency Control

Concurrency control in Matisse and Itasca is at the object level; in ObjectStore

concurrency is at the database page level. If configurations are being used in ObjectStore,

then concurrency is at the configuration level. The differences between page level and

object level concurrency will be examined further in Section 3.8.

3.4 Security Authorization

Authorization to use a database file in ObjectStore and Matisse is based upon UNIX

file system security. If a user has access to a file through UNIX, then that user has access

to it through ObjectStore or Matisse. Essentially, these databases rely upon the operating

system to provide security.

The Itasca database has a much more sophisticated security authorization system.

Every user of the Itasca database has an identifier, which is independent of the operating

system user identifier. The identifier is used to control access to objects in the Itasca

shared database and to provide access to various private databases. Every operation on

an object in Itasca is checked to ensure that the user has authorization. This security

checking incurs a large amount of overhead. So Itasca does not do access checks on each

object when a user works inside a private database. In other words, if a user has access to

a private database, the user is granted access to all the objects in the private database.

3.5 Query Capability

All three of the DBMSs provide an "ad-hoc" query capability through a graphical

browser tool, but only ObjectStore and Itasca provide query language support from within

a database application. The Matisse DBMS does not provide a query language capability
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ItasceSet obj.list;

Vehicle: :select(
objlist,
QUERY.•EXPRESSION, "( equal Naaufacturerlane \"Oldmaobile\" )",
B AD.RGS );

Figure 7. A Sample Itasca Query

in the object-oriented services API. Itasca and ObjectStore differ in the implementation

of their application query languages.

3.5.1 Itasca. Itasca provides a query capability for DBMS applications. The

query language is limited to performing queries over instances of classes [3, 20]. The scope

of a query may be set by the user of the database to private, shared, or alobal. If the scope

of a query is private, only instances of the class in the current private dat.abase are examined

during the query. If the scope of the query is shared, then only instances of the class in

the shared database are examined during the query. If the scope of the query is global,

then all instances of the class in the current private database and the shared database are

considered. An example of an Itasca query in the C++ API is shown in Figure 7. The

query places all instances of the Vehicle class which have a value of "Oldsmobile" for their

ManufacturerName into the obj-iit set. Notice that the query expression must be written

in the Lisp programming language, not the C++ language. This is a disadvantage of the

current Itasca C++ API because the programmer must understand the C++ and Lisp

programming languages along with the additional semantics of the Itasca DBMS.

Itasca also provides a query optimizer to optimize the evaluation of application

queries.

3.5.2 ObjectStore. ObjectStore also provides a query language capability which

allows complex queries on collections. Collections in ObjectStore are groups of objects.

An example of a query in ObjectStore is shown in Figure 8 [28]. The query determines

all the public school students who are also teenagers. The query shown in Figure 8 uses

the ObjectStore DML. The ObjectStore DML extends the C++ language with database
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osdatabase *stud.at~database;
os_..Setustidet*> &public.-school_ tudeats;

oa_$St<studeat*> kteeaagtra a
public-school-students[: this->a.e >- 13 && this->age <- 19 :1;

Figure 8. A Sample ObjectStore DML Query

constructs. The DML query language is a natural extension of the C++ programming

language. An ObjectStore query may also use the query method, which is defined for

every ObjectStore collection class.

ObjectStore provides a query optimizer to optimize the evaluation of application

queries.

3.6 Distributed Database Capabilities

All three DBMSs provide client/server type distributed capabilities, but only the

Itasca DBMS manages fully distributed databases. To set up a distributed database in

Itasca, several databases on different machines are initialized then declared to be network

sites. Data can migrated among network sites through the use of database administration

tools provided by It -,ca. The Itasca DBMS's distributed capabilities are very similar to

the capabilities provided by existing distributed relational DBMSs.

3.7 Programming-Language Integration

This functional criteria was identified by Cattell [8]. Cattell maintains that an object-

oriented DBMS should be closely integrated with a programming language to solve the

impedance mismatch problem which is common in relational DBMSs. If a close relationship

exists between the programming language and the database, a programmer will only have

to learn how to use one programming language.

3.7.1 Itasca. The Itasca DBMS has close ties with the Lisp programming lan-

guage, but Itasca has created an interface to the C++ programming language. For this

research we only investigated the C++ interface to Itasca. So we are unable to examine
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how well the Itasca DBMS is integrated with the Lisp programming language. The main

design goal of Itasca when they developed the C++ API was to provide the full capabilities

of the existing Itasca database through the C++ programming language. Therefore, the

C++ API is closely tied to the C++ language where the C++ object model and the Itasca

object model are the same. But where they are different the C++ API forces the Itasca

DBMS model upon the C++ programmer.

3.7.2 Matisse. The Matisse DBMS makes no attempt to provide close ties with a

programming language. The interface to Matisse, which is defined in the C programming

language, is a functional interface into the database's object model. If a programming

language (such as C++) supports an object model, then the programmer must learn the

language's object model and the Matisse DBMS's object model. This separation ensures

that Matisse is not closely tied to any single programming language.

3.7.3 ObjectStore. The ObjectStore DBMS provides close integration to the

C++ programming language. ObjectStore defines a superset of the C++ programming

language, called the ObjectStore DML, which makes database functionality available to

the programmer. ObjectStore also provides a more functional interface to standard C++

(C++ without ObjectStore's language extensions) and the C programming language.

3.8 Database Architecture

This section will examine some of the available information on the architectures of

the three commercial DBMSs examined for this research and the major differences we

observed between the three DBMSs during this research.

A major difference between ObjectStore, Itasca, and Matisse is the way data is passed

from the DBMS server to an application. ObjectStore is a page server rather than an object

server. The Itasca and Matisse DBMSs provide data to a client application as objects. For

example, if a single object is requested, that single object can be sent to the application.

ObjectStore transfers data to a client application in database pages. A database page in

ObjectStore could contain several objects. So if an object is transferred to an application,
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several other objects will also sent. The idea of the page server is to improve performance.

If an application works in a small area of its database, fewer transfers will be required

sending database pages then sending objects. The disadvantage of the page server is that

it is difficult to obtain fine grain concurrency. The ObjectStore DBMS locks data elements

at the page level rather than the object level. The server has to lock all the objects on a

page, when an application may only be working with a single object.

ObjectStore executes an ObjectStore server process, osserver, on any machine which

acts as a database server. Every machine which will be a client machine must be executing

a cache manager process, called cmgr. Only one cache manager is executed on a client

machine, even if multiple clients are executed. The requirement for the cache manager

process is a very annoying part of ObjectStore. Neither Matisse nor Itasca required any

software on the client machines, except the client application (although Matisse required

access to the license manager). The cache manager could also become a bottleneck if

several applications were executed on the same client. However, this is unlikely since a

single workstation usually only serves one user.

3.8.1 Itasca. Very little is discussed about the architecture of the Itasca DBMS in

the documentation provided with the product, but the architecture of the Orion DBMS is

described in [13, 22, 23]. The Itasca DBMS is the closest to a traditional relational DBMS

architecture of the three object-oriented DBMSs we examined. It provides a database

server which is responsible for executing all interactions with the DBMS. Some support

for caching of data is allowed in Itasca, but we encountered problems when using it in the

C++ API. Itasca support is creating better support for caching in a new version of the

C++ API, which should improve the performance of remote applications.

3.8.2 Matisse. The architecture of the Matisse database is composed of three

different levels built upon each other [19]:

* Micro-Model: The micro-model is the lowest level of the Matisse database. It im-

plements a very simple data model of objects and connections. The micro-model is

used to build templates.
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Table 3. Summary of Object-Oriented DBMS Capabilities

Capability Itasca Matisse ObjectStore

ACID Transactions Yes Yes Yes
Long Transactions Yes No Yes
Nested Transactions Yes No Yes
Non-Blocking Read-Only No Yes No
Transactions
Locking Level Object Object Page or

I_ Configuration
Security Database Operating System Operating System
Application Query Language Yes No Yes
Distributed Database Yes No No
Close Language Interface Yes (Lisp) No Yes (C++)
Server Type Object Object Page

"* Templates: A template is a generic data model which describes the rules to follow

when designing a database schema. The only template which exists for Matisse is

an object-oriented template. This template is used by the object-oriented services

API. Matisse states that any data model template can be developed in on top of the

micro-model. For example, a relational data model could be developed for Matisse.

"* Schema: A schema is a user-defined structure which is used by an application.

3.8.3 ObjectStore. The ObjectStore architecture is designed to enable a client

application very fast access to data. ObjectStore uses virtual memory mapping and client

caching to improve application performance. Virtual memory mapping allows persistent

objects to be mapped via normal memory locations. If a program tries to access an

object which has not been moved to memory, a fault occurs, and the object is brought

into memory. This process is transparent to the application programmer. The advantage

of the ObjectStore approach is that access to persistent data once it has been mapped

into the application's virtual memory is as fast as normal memory access [28]. However,

ObjectStore's database size is limited by the virtual address space of the machine, which

is 232 bytes on a Sun SPARC machine.
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3.9 Summary

This chapter has examined the functional capabilities and differences between the

Itasca, Matisse, and ObjectStore DBMSs. Several topics of database functionality impor-

tant to this research were investigated. A summary of the functional capabilities of Itasca,

Matisse, and ObjectStore is shown in Figure 3. The next two chapters examine our work

with the 001 benchmark and the simulation benchmark.

43



IV. 001 Benchmark Analysis, Design, and Implementation

In this chapter we describe our analysis, design, and implementation of the 001

benchmark for the Itasca, Matisse, and ObjectStore object-oriented DBMSs. Object-

oriented analysis and design was used on the benchmark requirements to produce a valid

design. Our analysis and design used the methods presented by Coad and Yourdon [10,

11] and by Rumbaugh, et al. [36]. Implementation of the benchmark was done on the

three commercial object-oriented DBMSs based upon the final design. This chapter first

examines our object-oriented analysis and design of the 001 benchmark and then examines

the issues faced when implementing the benchmark on the three object-oriented DBMSs.

4.1 Object-Oriented Analysis

Our analysis was based upon the information contained in the benchmark specifica-

tion [9, 14]. The specification defines requirements for the 001 benchmark but does not

dictate a specific implementation. The goal of our analysis was to build an object-oriented

model of the system required by the benchmark specification. To do this, the steps of the

Coad/Yourdon object-oriented analysis (OOA) method presented in [10] were used. These

steps are listed below:

1. Identify classes and objects

2. Identify structures

3. Identify subjects

4. Define attributes

5. Define services

Our final Coad/Yourdon OOA diagram is presented in Figure 9. A summary of C<o•i-

/Yourdon notation appears in Appendix A. How we arrived at this diagram will be ex-

plained, in detail, in the following sections which describe the steps taken in our analysis.

4.1.1 Identify Classes and Objects. The 001 benchmark centers around a single

object: the part. Various actions are performed on parts and the wall clock time, or elapsed
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time, required to perform them is measured. Therefore, the first class in our analysis model

was the part class. The benchmark requires that a group of parts be created in the database

(20,000 for the small database, and 200,000 for the large database). Each part connects

to three other parts and must know which parts connect to it. Each part contains, as

attributes, some information about itself. Each connection also contains some information

about the connection it represents. Figure 10 shows a group of five parts and some of their

connections. The connections are only shown for the part with an identifier value of 1, and

the part with an identifier value of 4 (part 1 and part 4). All of the other parts would have

three connections also, but these connections are not shown in Figure 10. Each part knows

to which parts it connects. For example, part 1 knows that it connects to part 1, part 2,

and part 2 (again). Also, part 4 knows that it connects to part 1, part 2, and part 3. The

benchmark specification does not mandate that the connections be kept in any particular

order. Each part also knows what parts connect to it. For example, part 1 knows that part

1, and part 4 connect to it. Hence, the arrows in Figure 10 can be followed in the reverse

direction, as well as in the forward direction. Notice that the number of connections from

a part is fixed at three, but the number of connections to a part may vary. For example,

part 1 connects to three parts, but has only two connections to it.

The second class we identified in our analysis was the connection class. The connec-

tion class holds the attributes required for each connection. This class is really a relation-

ship between two parts which has attributes. In the Coad/Yourdon OOA notation, this

is represented as a class, but is modeled by Rumbaugh, et al. more directly. Figure 11

shows the representation of the part and connection classes in a Coad/Yourdon OOA di-

agram and Figure 12 shows the same diagram represented as a Rumbaugh object model.

The Coad/Yourdon OOA diagram uses instance connections to model the structure shown

more directly in the Rumbaugh object model.

The last class we identified in our analysis of the 001 benchmark was the ool class.

This class was needed for two reasons. First, it acts as a container for the parts and

indirectly the connections. Second, it encapsulates the 001 benchmark measures.
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4.1.2 Identify Structures. Coad/Yourdon specify two types of structures which

should be identified during analysis: generalization-specification and whole-part [10]. Gen-

eralization-specification identifies "is a" relationships, commonly called inheritance, be-

tween classes. Whole-part structures identify "has a", or "is made up of", relationships

between instances of classes. For the 001 benchmark, we identified no generalization-

specification structures, but set up a whole-part structure between the ool class and the

part class. In our model, all part instances are contained in a single instance of the ool

class. This whole-part structure can be seen in Figure 9.

4.1.3 Identify Subjects. Subjects are used to break an analysis model into differ-

ent parts which form a logical group of classes [10]. Due to the small number of classes we

identified, we omitted the identification of subjects, but subjects are used in our design for

the 001 benchmark.

4.1.4 Define Attributes. Attributes are data, sometimes called state infc mnation,

for which a separate copy is included in each object of a class [10]. Most of the attributes

we identified for the 001 benchmark are dictated by the benchmark specification. The

specification describes the data which must be associated with each part and connection.

This simplified the definition of attributes for our analysis model. For the part class, the

following attributes were identified directly from the benchmark specification:

" Id: This attribute acts as a unique identifier for a part, which is defined as an integer.

Starting from a value of 1, each part instance is assigned a consecutive integer for its

Id value.

" Type: This attribute is defined as a string. The string may take on values between

part-type0 and part-type9. The specific value for a part instance is randomly

selected.

" X: This attribute is defined as an integer between 0 and 99,999. The value represents

the y-axis value of a location. The specific value for a part instance is randomly

selected.
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" Y: This attribute is defined as an integer between 0 and 99,999. The value represents

the y-axis value of a location. The specific value for a part instance is randomly

selected.

"* Build: This attribute represents a date and time. The value for a specific part is

randomly selected from a 10-year range.

For the connection class, the following attributes were identified directly from the bench-

mark specification:

"* Type: This attribute is defined the same as the Type attribute of the part class.

"* Length: This attribute is defined the same as the X and Y attributes of the part

class. The value represents the length of the connection between the two parts.

For the oc - lass, we identified only a single attribute:

* NumParts: This integer attribute contains the number of parts which have been

created in the database. Its value will be 20,000 for the small database, and 200,000

for the large database.

4.1.5 Define Services. Services are the methods or functions which classes can

perform [10]. As was the case for defining attributes, the benchmark specification dictated

most of the required services. The services included the benchmark measures and the

creation and deletion of the benchmark database. For the ool class, the following services

were identified:

"* Load: This service creates the benchmark database. For the small database, 20,000

parts and 60,000 connections are created. For the large database, 200,000 parts and

600,000 connections are created.

" Clear: This service removes all the persistent part and connection instances from the

database.

"* Lookup Measure: This service looks up 1,000 randomly selected parts from the data-

base. For each part, a null procedure (a procedure which performs no purpose
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except to exist) is called passing the X, Y, and Type attributes of the part'. The

1,000 lookups are repeated ten times. The first time is reported as the cold time

for the measure and the asymptotic best time is reported as the warm time for the

measure (or the average of the second through the tenth time).

* Forward Traversal Measure: This service finds all the parts connected to a randomly

selected part, up to seven levels deep. 3,280 parts will be found in this measure. For

each part, a null procedure is called passing the X, Y, and Type attributes of the

part. The traversal is repeated ten times. The first time is reported as the cold time

for the measure and the asymptotic best time is reported as the warm time for the

measure (or the average of the second through the tenth time).

* Reverse Traversal Measure: This service is the same as the forward traversal, except

all the parts which connect to a randomly selected part are found. An indeterminable

number of parts will be found in this measure. The time for this measurement is

normalized for comparison with the forward traversal measure. The traversal is

repeated ten times. The first time is reported as the cold time for the measure and

the asymptotic best time is reported as the warm time for the measure (or the average

of the second through the tenth time).

* Insert Measure: This service will create 100 new parts in the database. Three new

connections will also be created for each new part. As each part is being created, a

null procedure is called to obtain values for the X and Y attributes of the part. The

100 inserts are repeated ten times. The first time is reported as the cold time for the

measure and the asymptotic best time is reported as the warm time for the measure

(or the average of the second through the tenth time).

For the part class, the following services were identified:

* Forward Traversal: This service calls the null procedure defined in the forward

traversal measure of the ool class, then calls the forward traversal service for each

part which is connected to it. Hence, this service is recursive.

'When implementing the null procedure, care must be taken to ensure that the compiler does not

remove the call during optimization.
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* Reverse Traversal: This service calls the null procedure defined in the reverse traver-

sal measure of the ool class, then calls the reverse traversal service for each part which

connects to it. Hence, this service is also recursive.

No services were identified for the connection class. We also note, via the shaded arrow

in Figure 9, that the ool class calls the services defined in the part class. Specifically, the

traversal measures are set up as recursive calls to the traversal services in the part class.

Our analysis of the 001 benchmark is now complete. Due to the use of object-

oriented design and then implementation in an object-oriented programming language

using an object-oriented DBMS, no major changes to the model defined in our analysis are

necessary during design and implementation. Our design is described in the next section.

4.2 Object-Oriented Design

The object-oriented design for the 001 benchmark took the analysis model developed

in the previous section and created a design for the benchmark. To do this, the steps of

the Coad/Yourdon object-oriented design (OOD) method were used [11]. The steps to

the OOD method are the same as those we used in our analysis, but attention focuses on

breaking up the analysis model into the following four components:

1. Human interaction component

2. Problem domain component

3. Task management component

4. Data management component

For the 001 benchmark, we ignored the design of the task management component, and

the data management component. The task management component was ignored because

the benchmark does not need to concurrently execute several tasks, and the data man-

agement component was ignored because the object-oriented DBMS will provide all of the

benchmark's data management. The next two sections will describe our design for the

human interaction component and the problem domain component.
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4.2.1 Design of the Human Interaction Component. The 001 benchmark needs

a minimal user interface. The benchmark is run from the UNIX command line. The

executable program for the benchmark is called bench and it accepts the following inputs:

" Object-Oriented DBMS Authorization: This information, which is different for each

object-oriented DBMS, provides the benchmark with the information necessary to

connect to the object-oriented DBMS and perform any authentication required by

the security features of the object-oriented DBMS.

"* Benchmark Operation to Execute: This information directs the program which service

of the ool class to run. The choices include: load, clear, lookup, ftrav, rtrav,

and insert.

"* Number of Parts in the Database: To avoid a database query to determine the number

of parts in the database, which could bias the cold results, the number of parts in

the database is provided to the benchmark program.

"• Random Stream Number: The random number generator used for the benchmark

program contains 100 pre-defined streams of random numbers. This value selects the

stream used for the measure to be executed.

The bench program provides text-based output which reports the benchmark results. For

each benchmark measure the results include the elapsed time for each of the ten iterations

and the cold and warm times.

4.2.2 Design of the Problem Domain Component. For the 001 benchmark the

problem domain component is derived from our analysis model. The following changes

were made to our analysis model during design of the problem domain component:

e Variable Number of Connections From a Part: Our analysis model identified that

each part would connect to exactly three other parts. To allow for possible variations

in the number of parts a part can connect to, this was made a variable relationship.

This additional capability allows for variations to be made in the benchmark data-

base.
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Figure 13. OOD Diagram for the 001 Benchmark-Subject Layer

"* The 001 Class Maintains a Collection of the Connection Instances: To facilitate

testing and to help eliminate object leaks, the ool class was designated to keep track

of all the connection instances as well as all the part instances.

"* Identification of Persistent Classes: The part and connection classes were identified

as persistent classes. That is, they are the classes which were stored in the object-

oriented DBMS. To differentiate persistent classes from non-persistent classes, the

persistent classes are shaded in our OOD diagrams.

"* Addition of the Benchmark Support Library: The benchmark support library was

added as a separate subject. The benchmark support library consists of routines for

measuring elapsed time and generating random numbers. This library is documented

in Appendix F. The dice class is used by the ool benchmark to generate uniform

random numbers and the stopwatch class is used to measure the duration of the 001

benchmark operations.

Figure 13 shows the subject layer of our 001 benchmark design and Figure 14 shows our

final Coad/Yourdon OOD diagram.

Due to the use of the C++ programming language with an object-oriented DBMS,

our design changed little for each of the three implementations. The next section describes

our implementations of the 001 benchmark on three commercial object-oriented DBMSs.
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4.3 Benchmark Implementations

This section describes the implementation of our benchmark design on each of the

the three commercial object-oriented DBMSs. We first examine the changes necessary to

our design to implement the benchmark on the database. Then we examine the problems

we encountered implementing and running the benchmark on the database.

4.3.1 Itasca Implementation. Our 001 benchmark implementation for the Itasca

DBMS was created using the Itasca C++ API and written in the C++ programming

language. Four versions of the benchmark software were written for Itasca. We first

examine the benchmark implementation in Itasca and then cover the problems encountered

during implementation.

The Itasca DBMS requires that all persistent classes be subclasses of a class called

class. Our design was changed to reflect this requirement. A final Coad/Yourdon OOD

diagram for our Itasca implementation is shown in Figure 15. The OolAbstractConnection

class will be discussed during the coverage of our implementation problems with Itasca.

To create the persistent classes in Itasca the dynamic schema editor was used. This

program is the recommended method of creating classes in the Itasca database [20]. Once

the classes were created, the C++ definitions were dumped into a C++ header file (this

file was called schema.hh). The entire benchmark was implemented with a single C++

executable program, called bench.

Because the Itasca DBMS was implemented in the Lisp programming language, we

considered creating a Lisp version of the 001 benchmark for Itasca. But Itasca support

told us that we would not see a significant performance difference due to the requirement

that the 001 benchmark be run remotely. A Lisp version would have had better perfor-

mance, according to Itasca support, only if it was allowed to run exclusively in the native

(local) Lisp API.

Itasca support examined our benchmark code on several occasions and helped to

correct several problems with our program. The next section discusses the problems we

encountered implementing the 001 benchmark in the Itasca DBMS.
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The Itasca version of the 001 benchmark took the most time to complete. A large

number of problems were encountered. The problems encountered with the Itasca imple-

mentation fall into two groups: problems encountered with the Itasca DBMS and problems

with the C++ API. The reason we note the difference is that the C++ API is a new prod-

uct for Itasca and will no doubt change a good deal in the near future, while the Itasca

DBMS should be more mature. Most of the difficult and time consuming problems en-

countered with the Itasca implementation involved trouble with the C++ API and not

the Itasca DBMS. The following is a list of the problems we encountered with the Itasca

DBMS and C++ API:

"* Slow Database Commit: The commit of data takes a significant amount of time in

the Itasca database. Itasca support indicated that they have been working on the

time the database commit takes, which they report is mostly taken up by object

hashing and writing to the disk. They report that they were able to improve the

performance by 400%, but at a cost of significant increases in memory use. We hope

that future versions of Itasca will solve this performance flaw.

"* Unbounded Growth of the Database Log File: Due to the limited amount of disk space

available to perform our research we encountered a problem with the Itasca database

log file. The log fie stores the transactions which are in progress. In theory, the log

file should shrink when database commits are performed, but the current version of

Itasca only garbage collects the log file during a restart of the database. To shrink

the size of the log file, the database must be shutdown and restarted. The expanding

log fie filled the entire disk on our test workstation on several occasions.

"* Flat Name-Space for Database Objects: The name-space in the Itasca database used

for class names is flat across all users of the database. Only one class in the database

may have the same name. This can cause conflicts with existing names. For the 001

benchmark, all the persistent class names were prefixed with the string Qol to avoid

this problem.

"* Private Database Numbering: All private databases are assigned a number when

they are created. The user has no control over private database number assignment
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but is responsible for keeping track of these numbers. In Itasca each user contains

an attribute which defines the private databases which have been created by that

user. When a user connects to Itasca (in a program or using one of the Itasca GUI

tools) Itasca places that user in the first private database that exists at the current

site and in the list of private databases created by that user. If there are no private

databases which have been created by the user, then the user is placed in a private

database to which the user has been granted access. If a user is not allowed in

any private database, then the user is placed in private database -1 (which means

no private database). The private database system was difficult to decipher when

we first started work with Itasca and often placed our benchmark program in the

wrong private database. There is currently no logical or symbolic representation for

the private database numbers and a user is responsible for keeping track of all the

private database numbers they own.

"* No Circular Class References in the C++ API: The Itasca C++ API could not

represent circular references between classes. For example, if class A has a refer-

ence to class B then class B is not allowed to have a reference to class A. This

limitation is only in the Itasca C++ API and is an unusual limitation. The C++

language does not have this limitation and the Itasca database does not have the

limitation. Itasca customer support told us that the problem would be cleared up

in the next release. To solve the problem, a dummy-superclass was declared for the

OolConnection class named OolAbstractConnection. The OolPart class contained

references to the OolAbstractConnection class rather than the Ool Connection class

and the OolConnection class contained the other side of our reference with a refer-

ence to the OolPart class. To the application program the end result appears as if

there is a circular reference, but there is some overhead incurred because of the use

of the superclass.

"* Lack of Non-Persistent Method Support in the C++ API: The Itasca C++ API does

not allow non-persistent methods or normal C++ class methods to be easily created.

The Itasca dynamic schema editor (DSE) is the preferred tool to create a database

schema for Itasca. Once a schema is created in the Itasca database, the DSE is used
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to automatically generate a C++ header file. Since the DSE does not allow the

creation of C++ methods inside of classes, the generated C++ header file must be

edited to add the methods. Itasca support recommended using a C include file (a

".h" file) to define the methods and including the file in the generated C++ header

file. This was done, and as Itasca support indicated, it saved a good deal of effort

when the C++ header file was regenerated.

A related problem to the inability to allow non-persistent methods was the lack of

the ability to declare attributes in a class private to the class. This is an ability of

the C++ programming language which was not included in the Itasca C++ API.

Itasca support indicated that this was not supported because there is no concept of

the private class member in the Itasca database.

9 Transient Memory Management: A large problem encountered with the Itasca C++

API was a misunderstanding on our part as to how the API handled transient memory

associated with persistent objects. When an object is read from the database, some

transient memory is allocated to hold that object. In Itasca, the management of that

memory is not considered the responsibility of the DBMS but of the application.

Though this is not documented in the C++ API manuals [20], the following rules

(which we deduced) were confirmed with Itasca support:

- If a persistent object is created via the C++ new operator, then the application

is responsible for its transient memory.

- If a persistent object is retrieved via an Itasca query, then the application is

responsible for its transient memory.

- If a persistent object is retrieved via an Itasca iterator, then the application is

not responsible for its transient memory.

This was a very confusing portion of the Itasca C++ API and caused us to create

huge memory leaks in our benchmark program. The above rules were only deduced

after Itasca support removed the majority of the memory leaks from our program.

Itasca support informed us that transient memory management should have been in

the manual and that the documentation oversight will be corrected in the future.
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4.3.2 Matisse Implementation. Our 001 implementation for the Matisse DBMS

was written in the C++ programming language, but the object-oriented services API to

Matisse only uses the C programming language subset of C++. Three versions of the

benchmark were written for Matisse. We first examine the benchmark implementation in

Matisse and then cover the problems encountered during implementation.

Two executable programs were created for the Matisse version of the 001 bench-

mark. The first program was the bench program and the second was the oolschema. The

bench program implemented the benchmark operations and the oolschema program loaded

or removed the database schema from the Matisse DBMS.

The Matisse database makes no attempt to be transparent to the application pro-

gram. The bindings to the object oriented services are a strictly functional API written

in the C programming language. The object-oriented nature of the Matisse database is

inside the database and is completely different from the object-oriented nature of the C++

programming language. Therefore, persistent objects in Matisse are not implemented as

C++ classes. The persistent objects are represented only in the database and communi-

cation takes place through the Matisse object-oriented services API. The non-persistent

methods which are needed for the benchmark were implemented as C functions with calls

to the database.

Matisse support examined our implementation on several occasions and made several

suggestions for improvement. The various improvements made based upon their input will

be covered in the next section.

Most of the problems encountered during the development of the Matisse implemen-

tation involved difficulty in understanding the operation and use of the Matisse DBMS.

The following is a list of the problems we encountered with the Matisse DBMS:

e Version Collection: The Matisse system performs intrinsic versioning of all objects.

If an object is changed in the database, a new version is created. This scheme

requires a large amount of disk space. To collect old versions and to compact the

current objects in the database, a program called mr-collecLversions must be used.

This program starts up a task in the database which runs concurrently with all other
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database tasks. This program needs to be run rather frequently or a large amount

of disk space is unnecessarily consumed. Due to the limited amount of disk space

available for our test workstation we frequently ran out of database disk space (or

silo space in Matisse terms).

The collect versions operation occurs in asynchronous mode and the Matisse server

creates a dedicated thread to perform it. Thus, there was no easy method to measure

the time it takes to execute. The collect versions operation has two main goals:

collecting the old versions of the objects and compacting objects into the minimum

number of buckets. Matisse support informed us that most Matisse customers create

a crontab entry to run the collect versions in a periodic fashion.

Because the version collection program runs concurrently with other database tasks

and can not be measured, we were unable to determine the exact impact which this

has on database performance. We ran several tests with different delays between

using the version collection and running the benchmark. It appears to be very im-

portant to analyze the application for which the database is being used and set up a

reasonable schedule for the use of the version collection program. If any application

is running at the same time the version collection program is running, the other ap-

plication has priority. Therefore, database "down" time must be planned to run the

version collection program.

* Schema Creation: The first version of our 001 benchmark implementation for Ma-

tisse created the database schema during the load operation and removed the schema

during the clear operation. Customer support pointed out to us that this was causing

some additional overhead of which we were unaware. The Matisse object services

provides two different libraries which applications can link to: the data management

(DS) library and the data and schema management (DE) library. The DS library

is used for applications which modify the schema in the Matisse database. The DE

library is used for applications which work with objects in the database but do not

change the schema. There is some additional transaction overhead when the DS

library is used to ensure that schema changes are done properly. Matisse support

had run our original program to load the data, then relinked with the DE library to
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run the benchmark measures and suggested that we do the same. Because the 001

benchmark does not require schema evolution, we decided to separate the schema

creation from the benchmark program entirely. A new program, called oolschema,

was created to load the benchmark schema into the Matisse database. This program

was linked with the DS library and the benchmark program, bench, was linked with

the DS library. The new program made the Matisse implementation closer to our

Itasca and ObjectStore implementations. For the Itasca implementation, the •ehema

is created using the dynamic schema editor, not by the benchmark program. For the

ObjectStore implementation, the schema is created by the OSCC compiler while the

program is being compiled and linked.

"* Use of Client Memory Transport for Local Clients: The Matisse DBMS allows the use

of memory transport for local clients to the database, rather than the use of network

transport. Memory transport is designed to improve local client performance by

using shared memory and semaphores. Matisse support described to us the method

for enabling local client memory transport and we encountered no problems with

it. However, we feel that this setting should be the default for local clients, not an

esoteric parameter in the Matisse configuration file.

"* Non-Blocking Read-Only Transactions: A feature of Matisse derived from the intrin-

sic versioning is the ability to perform a non-blocking read-only transaction on any

old version of an object. Matisse support recommended using this feature for the

lookup and traversal measures of the 001 benchmark since they are read only. We

did not use this ability in our 001 benchmark implementation because all the other

implementations used full transactions, but do note that it is a powerful feature of

the Ma;.isse DBMS.

"* Object Identifier (OID) Usage: Matisse support informed us that OLDs in Matisse

are valid over the entire lifetime of an object. Therefore, it is efficient to read in all

the OIDs necessary for a program and then use them where necessary. We had been

looking up OIDs auring each transaction.

"* Benchmark Design: Matisse support was the only vendor support group which ques-

tioned our design of the 001 benchmark. The basic problem which they had was
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with our use of two inverse relationships between the part and connection classes.

They felt that only one inverse relationship was necessary. They also noted that the

specific cardinality in our object model was not used in the implementations. In the

001 benchmark there are always three connections from a part, but the implemen-

tations allowed this number to be larger or smaller. These questions from Matisse

support were resolved through the communication of our design to them.

4.3.3 ObjectStore Implemertation. Our 001 implementation for the Object-

Store DBMS was written in the C++ programming language using the ObjectStore DML

extensions to the language. Eight versions of the benchmark were written for ObjectStore.

No changes to the final design were necessary for the ObjectStore version of the 001

benchmark.

Development of our benchmark with the ObjectStore DBMS was the closest to simply

developing the benchmark in the C++ programming language. ObjectStore appears to

the developer as a persistent C++ implementation with additional support for database

constructs. Persistent classes in ObjectStore are no different from transient objects in

C++, except for the method of their creation.

ObjectStore support was offered the opportunity to examine the benchmark program

we developed but they declined. They did provide a good deal of help with specific prob-

lems encountered during development but did not provide much input on improving the

performance of the final program.

The following is a list of the problems we encountered with the ObjectStore DBMS:

* Persistent Object Leak: The greatest problem with the ObjectStore version of the

001 benchmark was a persistent object leak. This problem had occurred with all

the implementations, but it was discovered first in the ObjectStore implementation

of the benchmark. In a programming language, it is very important for a program

to give back dynamic memory to the operating system. If this is not done then

the program is said to have a memory leak. With an object-oriented DBMS it is
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possible to have a memory leak into the persistent storage area. We have called this

a persistent object leak (since objects are lost in the database not memory).

In our 001 implementation, the persistent object leak occurred during the insert

measurement. The insert was creating 100 new part objects and 300 new connections

objects, but was only deleting the 100 part objects. Thus, every benchmark run on

the database was losing 300 connection objects in the depths of the database. The

problem was detected when the reverse traversal measurement started crashing the

benchmark program. The lost connections maintained a connection to the part to

which they were connected, so that lost connections could be traversed during the

reverse traversal measure. When a lost connection was traversed, the application

found that the connecting part did not exist and would crash. The C++ destructor

functions of the part and connection classes were modified to ensure that all the

inserted objects were deleted.

Persistent object leak could become a major problem with object-oriented DBMSs,

and we noted that none of the vendors have provided tools to assist the application

developer to find lost objects.

" DBMS Tuning Parameters: We found the number of performance tuning parameters

available in the ObjectStore DBMS staggering. Despite this large number of parame-

ters, ObjectStore does not provide a guide to database performance. A large amount

of time can be spent tuning an ObjectStore database application for performance,

and this accounted for the the eight different versions of the benchmark we created.

We saved a great deal of time by examining an ObjectStore 007 benchmark imple-

mentation developed at the University of Wisconsin-Madison and used many of the

same performance settings [7].

" Index Use During Queries: Unlike current relational databases, an index must exist

for it to be used for a query. The query optimizer in ObjectStore will not create an

index if you have not defined one. This also seemed to be the case in Itasca. Matisse

provides no support for a query language which can be used in an application.
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4.4 Verification of Benchmark Program Correctness

It was very important that the implementations of the 001 benchmark be correct.

Two methods were used to verify the benchmark implementations: code inspections and

testing.

Code inspections were used for two purposes: error identification and implementa-

tion consistency. First, the inspections identified errors in the benchmark implementations.

Second, the inspections identified variations in the source code of the three implementa-

tions. Every attempt was made to keep the implementations consistent and the inspections

avoided unnecessary deviations in the implementations. A code style guide developed for

this research helped to simplify inspections of the source code. The style guide also pro-

vided a consistent style for all the implementations. The code style guide is documented

in Appendix G.

A large amount of testing was done on the benchmark programs. Testing was done

on very small databases (10 parts with 30 connections) and used debug code developed

into all the source code of every benchmark implementation. A consistent style of debug

output was obtained through the use of a macro package developed by Microsoft [27]. This

package is documented in Appendix G.

Additional verification was provided by the DBMS vendor support groups, who ex-

amined and executed the benchmark implementations at their sites. An exception to this

was ObjectStore, who never examined the source code of our benchmark implementation

for their database.

4.5 Summary

This chapter has covered the analysis, design, and implementation of the 001 bench-

mark developed for this research. We have examined, in detail, the problems encountered

when working with each of the three commercial object-oriented DBMS. Chapter VI ex-

amines the results obtained from our runs of the 001 benchmark. The next chapter,

Chapter V, examines the simulation benchmark developed for this research. The simula-
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tion benchmark investigates the ability of the three commercial object-oriented DBMSs to

support simulation systems.
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V. Simulation Benchmark

In this chapter we examine the requirements, design, and implementation of the

simulation benchmark. The simulation benchmark is a new benchmark designed for the

computer simulation domain. The simulation benchmark sets up a complete simulation

system in an object-oriented DBMS. The purpose of the benchmark is to examine the

performance and functional capabilities of the three commercial object-oriented DBMSs

available at AFIT for use with computer simulation.

5.1 Benchmark Description

This section describes our simulation benchmark for object-oriented DBMSs. The

benchmark simulates aircraft searching for moving trucks over an area of land. When an

aircraft finds a truck, the location and the time when the truck was found is logged. The

simulation used in the benchmark is a stochastic discrete-event simulation model [24]. The

benchmark requires an entire simulation system to be built for each object-oriented DBMS

which is tested. The object-oriented DBMS must be used in all portions of the simulation

system for storage, including simulation execution. This benchmark attempts to re-draw

the traditional line between the simulation software and the database (traditionally imple-

mented as flat files). We examine the requirements of the benchmark simulation system.

Then the benchmark measures are described; and, finally, we provide some justifications

for our benchmark.

5.1.1 Benchmark Requirements. The software required for our benchmark con-

sists of several parts: a model (of the aircraft and the trucks, and a map), a means to

configure a scenario, a simulation executive (to control simulation execution), a post pro-

cessing module to view simulation results, and support libraries (which provide support for

both simulation and benchmarking). The benchmark quantitatively measures performance

in all the areas of the simulation system. The benchmark is also a functional benchmark

since we examine the qualitative capability of an object-oriented DBMS to support a gen-

eral simulation system.
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Before examining specific requirements of the benchmark software, we enumerate

several general rules to which the benchmark must adhere. These rules apply to every

portion of the benchmark software.

1. Persistence of the Simulation Model: The simulation model used in the simulation

benchmark must be persistent. The model must be saved between one run of the

benchmark program and another.

2. No Flat-Files: The benchmark software may not use flat-files for data storage at

any point in time; the object-oriented DBMS must be used. This ensures we are

measuring the objected-oriented DBMS's ability to store data, not the operating

system's.

3. The Object-Oriented DBMS Must Manage the Cache: The benchmark software must

allow the object-oriented DBMS to decide when data is brought in from the disk. The

benchmark program may not read all data from the object-oriented DBMS, run the

simulation, and then save all data to the DBMS. This ensures we are measuring the

objected-oriented DBMS's ability to cache data, not the benchmark programmer's.

4. Multi-User Capability: The benchmark implementation must be able to provide

multi-user support. For example, two copies of the simulation system must be able

to execute at the same time inside the same database. Several of the benchmark

measures depend on this ability. The object-oriented DBMS's support for transac-

tions, concurrency, versioning, and locking should be used to provide the multi-user

capability, not custom code written by the benchmark programmer.

5. Use Common Graphics Code: All benchmark implementations must use the same

graphics code for the user interface. The goal of the benchmark is to measure the

performance of the object-oriented DBMS, not to examine the performance of a

graphics library. But it is important, from a functional point of view, to note the

ability of the object-oriented DBMS to work with the graphics library.

Our intent is that a single program be built to represent the simulation system. The

program must provide a windowing-system user interface to the simulation system. To
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support the benchmark measures, the program must be instrumented with routines to

measure elapsed time and throughput.

5.1.1.1 Simulation System and Model Capabilities. This section describes

the requirements of the simulation environment for the simulation benchmark. All of the

requirements described in this section must be supported by the benchmark program. The

benchmark requirements are as follows:

"* Connect and Disconnect to an Object-Oriented DBMS: The benchmark program

must provide a method for the user to connect to an object-oriented DBMS. The

program should prompt the user for any authentication information required by the

DBMS to grant access.

"* Benchmark Simulation Model: The benchmark supports a single model, that of

aircraft searching for trucks on a map. Since the benchmark is a discrete-event simu-

lation, the simulation state evolves over time with changes occurring instantaneously

at selected points in time [241. The changes in simulation state are triggered by

events. The simulation contains two type of simulation objects: active and passive.

Active simulation objects execute events, while passive objects do not. The aircraft

and trucks are active simulation objects, and the map, which is a board of hexes, is

passive. We will first describe the state information, or attributes, required by each

object in our model, then describe the events required by the model.

The aircraft in the simulation each maintain the following information:

- Aircraft Name: This value is a string of 9 characters which uniquely identifies

an aircraft. The string is in the format "AIR-nnnnn". The nnnnn represents

a unique number for the aircraft. Numbers are assigned sequentially to each

aircraft starting from a value of 0.

- Location: All aircraft know where they are located. The value is a hex identifier

specifying a single hex on the hex board.

- Home Base: This value is a string of 10 characters. The value is randomly

selected from the strings {f"HOE-BASEl"... "HOME-BASE9"}.
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- Miscellaneous Simulation Data: This value is a string of 50 bytes. The data

must be selected from at least ten different values and represents additional

information which would be required by a more complex simulation system

than is represented in this benchmark.

The trucks in the simulation each maintain the following information:

- Truck Name: This value is a string of 9 characters which uniquely identifies

a truck. The string is in the format "GND-nnnnn". The nnnnn represents a

unique number for the truck. Numbers are assigned sequentially to each truck

starting from a value of 0.

- Location: All trucks know where they are located. This value is a hex identifier

specifying a single hex on the hex board.

- Type: This value is a string of 11 characters. The value is randomly selected

from the strings {"TRUCK-TYPE1"... "TRUCK-TYPE9"}.

- Payload: This value is a string of 11 characters. The value is randomly selected

from the strings {"CARGO-TYPEI"... "CARGO-TYPE9"}.

- Miscellaneous Simulation Data: This value is a string of 50 bytes. The data

must be selected from at least ten different values and represents additional

information which would be required by a more complex simulation system

than is represented in this benchmark.

There are three different types of events required by the simulation benchmark model.

They are the following:

- Aircraft Move: This event moves an aircraft into a randomly selected adjacent

hex.

- Search: This event causes an aircraft to search the hex in which it is located

for any trucks. If any trucks are found they are logged, so that they may be

reported in the summary report.

- Truck Move: This event moves a truck into a randomly selected adjacent hex.
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Figure 16. Event Graph (Queuing Model) for the Simulation Benchmark

The Aircraft Move and Search events are sent to aircraft and the Truck Move is

sent to trucks. An event-graph of the events is shown in Figure 16. The event-graph

notation is defined by Law in [24]. Each node of the graph represents an event type.

Each arc represents how an event may be scheduled by another event or by itself.

In the simulation benchmark, the Aircraft Move event schedules a Search event,

the Search event schedules an Aircraft Movement event, and the Truck Move event

schedules another Truck Move event. The graph indicates that the Aircraft Move

and Truck Move events must be scheduled initially for each aircraft and truck. All

events are scheduled in the future based upon a random draw from an exponential

distribution. For the Aircraft Move event, a mean value of 60 seconds is used; for

the Search event, a mean value of 30 seconds is used; and for the Truck Move event,

a mean value of 600 seconds is used.

* Create, Store, and Copy Simulation Models: The benchmark program must be able

to create and manage several simulatioD models. For simplicity, only the search

model defined above is required, but multiple distinct instances of this model must

be allowed in the database (each instance having a separate simulation state). Each
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model instance is created by the user and assigned a name. The user is also allowed

to make a copy of any existing model.

"* Configure a Scenario: The benchmark program must be able to configure a scenario

within a simulation model. To create a scenario, the user enters the number of

aircraft, the number of trucks, and map size desired for the scenario. The user can

also remove all the scenario elements from a model, effectly destroying the scenario.

"* Support a Simulation Time Slice: The user is able to define a simulation time slice.

The time slice defines how many seconds of time are simulated in a single step of the

simulation, although many simulation events (or none) may be simulated during a

single time slice. The time slice defines the granularity of the simulator. The time

slice is defined as a time in seconds and must have a value of 1 or greater. The

time slice defines the fixed-increment time advance for the simulation benchmark

program [241.

The time slice is used to define the benchmark's transaction model. Each time slice

is executed as a single transaction in the database. This definition of the transaction

model allows us to vary the amount of work done during a single transaction.

"* Support Batch and Real-Time Simulation Execution: The benchmark program is

able to execute the program to a goal time, running as fast as the system will allow,

although the simulation must still observe the time slice setting. This type of execu-

tion is called batch execution. The program must also support real-time execution

at a user specified ratio with wall clock time. The user is allowed to specify a time

ratio for the simulation to execute at. The time ratio is defined as the ratio of wall

clock time to simulation time. To simulate at the specified time ratio, the simulation

executes a single time slice, then delays for the remainder of the duration specified

by the time ratio. For example, if the time slice is set to 60 seconds, and the time

ratio is set to 1, then if the simulation requires 4 seconds to simulate the 60 second

(simulation time) time slice, the simulation would delay for 56 seconds before the

next time slice was executed. If the time ratio were set to 2 the delay would be 116

seconds. And if it were set to 0.5, then the delay would only be 26 seconds.
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e Support Post-Processing of Simulation Data: The benchmark program provides two

types of post-processing. First, a graphical hex map displaying all the aircraft and

trucks in the current model is available at user demand (the map image is not re-

quired to be stored in the DBMS). Second, a summary report of all the trucks found

by aircraft since the simulation started may be generated on demand. The sum-

mary report is generated to a text file. This summary report contains the following

information for each truck found:

- Report Time: The simulation time when the report was generated.

- Aircraft Name: The name of the aircraft which found the truck.

- Truck Id: The name of the truck found.

- Location Found: The location of the truck (the hex identifier) when it was

found.

- Time Found: The simulation time when the truck was located.

This section has examined the requirements of the simulation benchmark. The next

section describes the operations which our benchmark measures.

5.1.2 Benchmark Measures. This section examines the quantitative measure-

ments required by the simulation benchmark. These measurements are done for two dif-

ferent database sizes. The first database contains 1,000 trucks, 500 aircraft, and a 50 x 50

hex board. This database is called the small database. The second database contains

10,000 trucks, 5,000 aircraft, and a 100 x 100 hex board. This database is called the large

database. The following benchmark measures are made on the simulation system:

"* Model Creation: Measure the elapsed time required to create a new model instance.

This measurement does not include the time to create the scenario. This is a measure

of elapsed wall clock time.

"* Scenario Creation: Measure the elapsed wall clock time required to create the sce-

nario.

"* Simulation Execution (Hour Run): Use the run-until function of the simulation

executive to run the simulation for 1 hour with the simulation time slice set to 60
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seconds. This is a measure of elapsed wall clock time. This measure is also run with

a time slice of 600, 1800, and 3600.

"* Simulation Throughput: Run the simulation at the fastest ratio possible with the

time slice set to 60 seconds. The ratio must be at steady state for at least 10 minutes

of real time. Report the time ratio obtained. 90% of the time slices must maintain

the reported ratio.

"* Version Creation: Measure the elapsed time to create a new version of a model which

has been run through time for 1 hour. The new version may be a complete copy of

the model or a new version created by the object-oriented DBMS.

"* Map Creation: Measure the elapsed time for the creation of the map in the post-

processing portion of the simulation system. This measurement is taken for a paused

simulation, a running simulation, and a simulation running on a remote computer.

"* Report Creation: Measure the elapsed time for the creation of the summary report

containing a list of the trucks found by aircraft during simulation execution.

This section has described the quantitative benchmark measures. In addition to

the quantitative measures, the functional ability of the DBMS in which the benchmark is

implemented to support the simulation should be noted. The next section describes the

justification for our benchmark.

5.1.3 Benchmark Justification. Several choices were made in developing a mean-

ingful benchmark for the simulation domain. This section examines our reasons for the

current benchmark and attempts to justify them as much as possible. To the best of our

knowledge, this is one of 'he first attempts to build a persistent simulation environment

using an object-oriented DBMS; the only other work in this area we have encountered is

described in [40].

We feel that the model implemented in this benchmark provides several of the ele-

ments found in most discrete-event simulation systems. While it is true that the actions

of the simulation objects, the aircraft and trucks, are not very interesting, they do provide

a constant load on the simulation system when it is running. A problem with the use
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of objects which move so regularly is that not all simulations exhibit this property. For

example, it is possible that a simulation may be very inactive for a long period of time,

then be required to process a large number of events in a short period of time. While this is

possible, we felt it was much more important to provide a predictable load (on average) so

that it was possible to understand how many events the simulation would execute during

a period of time. With this understanding it could be possible to use our results to predict

performance of another simulation based upon the expected number of events required to

be executed during the simulation.

It is also important to note that the queue of events pending for the simulator is

going to be of the same magnitude as the number of active objects (aircraft and trucks) in

the simulation. This is due to the way events are scheduled (see Figure 16). Here we also

note that not all simulation systems exhibit this property.

The inclusion of a full graphical user interface (GUI) as a required part of the bench-

mark could be controversial, but we feel that any modem simulation system is going to

require a graphical interface which is well integrated with the simulator. Therefore, it is

essential to measure the object-oriented DBMS's ability to interface with the GUI while

supporting the simulation system.

An earlier version of the benchmark included terrain data for each hex on the hex

board, but we decided to eliminate this. The terrain data complicated implementation

and did not provide enough benefit to justify keeping it. The same amount of data can be

created in the database by creating more aircraft and trucks in a scenario.

We have provided the map and the summary report to represent two types of infor-

mation which a simulation system would have to keep: current and cumulative. The map

reflects the current state of the simulation and requires that all the objects in the simula-

tion be traversed. The summary report requires that information which was available in

the past be maintained, via a logging method of some sort, and reported. Both types of

information are required in typical simulation systems.
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User Database i Simulation

Figure 17. Simulation Benchmark Design-Big Picture

5.i Simulation Benchmark Design

For our design of the simulation benchmark, as in the design of the 001 benchmark,

we used the methods described by Coad and Yourdon [11].

The big picture of our benchmark design is shown in Figure 17. The user of the

benchmark program interacts with a graphical user interface. The user interface interacts

with a database interface module which hides the specifics of the database from the user

interface implementation. The database interface interacts with the simulation objects

based upon commands from the user interface. All the simulation objects are required to

be persistent and are therefore stored in the object-oriented DBMS. The next sections

describe our design of the human interaction component (the user interface), the problem

domain component, and finally the database interface.

5.2.1 Design of the Human Interaction Component. Unlike the 001 benchmark,

the simulation benchmark requires a large user interface component. Since we developed

our implementations on UNIX workstations, we decided to develop the benchmark user in-

terface with the OSF/Motif graphical user interface (GUI). Our design and implementation

of the user interface were designed to be compliant with the OSFIMotif Style Guide [29],

with additional ideas from Heller [17]. In this section we overview our user interface design.
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File Configure Execute Post Process Help

Connect... Create Scenario.. Set Time Slice... View Map...
Disconnect... Set Time Ratio... Generate Report

New Model... Run
Open Model.. Run Until...
Close

Save As...
Exit

Figure 18. Simulation Benchmark User Interface Menu

The main menu for our user interface to the simulation benchmark program is shown

in Figure 18. The main menu is the primary interface for the program user. The user is

allowed to select any menu item which is not dimmed (menu choices are only allowed when

they have meaning to the program). The following menus appear on the menu bar:

File: Contains commands to interact with the object-oriented DBMS, to create, copy,

select, and close simulation models, and to exit the program. The choices on this

menu are described below:

- Connect: This choice allows a user to connect to the object-oriented DBMS.

The user is prompted for any authentication information required by the DBMS.

Then a connection is established.

- Disconnect: This choice terminates the program's connection to the object-

oriented DBMS.

- New Model: This choice creates a new model instance in the database. The

user is prompted for a name for the model. Then the model is created. The

name for the new model must not already be the name of an existing model.

After the model is created, it is set as the current model.
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- Open Model: This choice presents the user with a list of the existing models in

the database. The user selects one of the choices and that model is set as the

current model.

- Close: This choice closes the current model.

- Save As: This choice creates a copy of the current model. The user is prompted

for a name for the copy, and then a copy is made. The current model remains

the same. If the user wishes to work with the new copy, the current model must

be closed. Then the copy must be opened with the File I Open Model command.

- Exit: This choice exits the program.

Configure: Contains commands to build and clear a scenario for the current model.

The choices on this menu are described below:

- Create Scenario: This choice creates a scenario for the current model. The user

is prompted for the number of aircraft, the number of trucks, and the size of

the hex board desired. Then the a scenario with the correct number of trucks

and aircraft is created. If a scenario already exists in the current model, it is

cleared before the new scenario is created. The simulation time for the current

model is set to time 0.

- Clear Scenario; This choice clears the current model's scenario.

Execute: Contains commands to control the execution of the simulation. The choices

on this menu are described below:

- Set Time Slice: This choice sets the value of the time slice for the simulation.

If the time slice is not set by the user, it defaults to a value of 1.

- Set Time Ratio: This choice sets the value of the time ratio for the simulation.

The time ratio is the ratio of wall clock time to simulation time. If the time

ratio is not set by the user, it defaults to a value of 1.

- Run: This choice starts running the simulation at the set time ratio. A dialog

appears to the user reporting the current simulation time and statistics about

the execution of the simulation. The dialog is updated at the end of each
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AFIT SimBeach REPORT (SIN TINE: 300 usc)

----.---------------- +------------4----------------
AIRCRAFT I TRUCK I LOCATION I SIN TINE

-- --------------------.------------ 4------------
AIR-00008 I GOD-00022 i 0016-0020 1 51 sec

AIIL-00039 I GID-00043 1 0041-0039 I 79 sec
AIR-00020 I GND-00004 I 0015-0032 I 119 sec
AIR-00037 I GND-O0018 1 0006-0017 1 160 sec

------.--------------------------------- - -

Figure 19. Example of the Summary Report

executed time slice. The dialog contains a push button which allows the user

to stop the simulation at any time.

- Run Until: This choice runs the simulation, as fast as possible, to a specific

goal time. The user is prompted for the goal time, which must be in the future,

and the simulation is executed until that goal time. This option also displays a

dialog which is updated after each time slice. The user may terminate the run

until operation at any time by pressing a stop button which is displayed in the

dialog.

* Post Process: Contains commands to execute the two post-processing options of the

benchmark. The choices on this menu are described below:

- View Map: This choice displays a hex board to the user with the aircraft and

trucks in the current model plotted on the map. The map may be left up and

updated by a user using an update push button or it may be dismissed at any

time. An update of the map is capable of responding to changes in the scenario,

including a change in the hex board size.

- Generate Report: This choice generates a summary report to the text file

SIM-REPORT. If the file already exists, it is overwritten. A sample of the

summary report is seen in Figure 19.
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* Help: Contains help about the simulation benchmark. The simulation benchmark

does not provide a full help system due the large amount of effort required to imple-

ment such a system in the current version of OSF/Motif.

5.2.2 Design of the Problem Domain Component. This section describes our

design for the problem domain component of the simulation benchmark. The problem

domain component consists of all the simulation objects required by the simulation bench-

mark. An OOD diagram of our design for the problem domain component of the simulation

benchmark is shown in Figure 20.

The model class is a container class which holds all the components of a model. Every

instance of the model class has a name which is stored in the name attribute. A model

contains a simulation environment, events, and logitems. The simulation environment

contains the active and passive simulation objects. The model's events define the future

actions of the active objects in the simulation environment. The logitems record informa-

tion which occurred during the simulation for later reporting. An instance of the model

class, with all its parts, defines a simulation state. The model stores its current simula-

tion time in the SimTime attribute and is able to advance simulation time by dispatching

events to the active objects in the environment. Simulation time in a model is advanced

using the RunUntilSimGoalTime service. This service executes a sequence of events in

time order until the goal time is reached. The concepts of time slice and time ratio are

not understood by the model class; it is only able to advance to a specific future time.

The Schedule service of the model class allows active object in the model's environment

to place schedule future events for the model. The AddEnvironmentMember service allows

new objects to be added to the model's environment.

All objects which are part of a model's environment are subclassed from the environ-

ment class. The environment class is a virtual class. That is, no instances of the class are

allowed to be created. The main purpose of the environment class is to force every subclass

to implement two services: a clone service and a query service. The clone service creates

an exact copy of the object. This service is required to allow distinct copies of models to be

created. The query service provides a means for other objects to obtain information about
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a simulation object. Every subclass of the environment class must answer two queries, but

most support more. The first required query is a query for the class name and the second

is a query for the object instance's name. Simulation objects which are subclassed directly

from the environment class are passive objects. For an active object to be created, it must

be subclassed from the player class.

The player class is a virtual class which defines the additional services required by

active simulation objects. The player class requires all its subclasses to define an Execute

service. The execute service is called for an object when an event for that object is

dispatched to it. Each event in the model contains a reference to the player object for

which it is designated; this reference is labeled ToPlayer in Figure 20.

The HezBoard class is the only non-active simulation object in the benchmark model.

This class contains three attributes: name, width, and height. The class allows queries

on its width and height attributes in addition to the two basic queries required by the

environment class.

The Aircraft and 7Truck classes are active simulation objects in the benchmark model.

These classes are subclassed from the player class. These classes contain the attributes

defined for them in the specification and allow queries on any of their attributes. The

execute service of the aircraft class will accept move and search events, while the execute

service of the truck class will accept only move events.

The Event class stores the future actions of all the simulation's active objects. Each

event instance contains a single action for one object. For example, an event could tell

aircraft AIR-00345 to search. The event maintains a reference to the object, shown as

ToPlayer in Figure 20. An event is dispatched to its object when it becomes the next time

ordered event. Events are dispatched by the RunUntilSimGoaITime service of the model

class. When an event is dispatched, the Execute service for the object it references is called

with the event's message attribute passed as a parameter to the call.

The LogItem class is used to store a log of all the trucks which are found during

aircraft searches. The simulation benchmark requires that this information be reported on

the summary report which is generated from the post-processing portion of the simulation

83



system. For each instance of the class, the information required by the summary report is

included.

5.2.3 Design of the Database Interface. The database interface portion of our

design interfaces the Motif user interface with the persistent objects which make up our

simulation model. It is a good principle of user interface design to separate the interface

from the application (171. To accomplish this we developed an interface package which the

user interface could call to perform actions on the object-oriented database. This avoided

placing DBMS calls in the same module with Motif calls.

A possibly confusing portion of our design is the simulation ezecutive. The simula-

tion executive controls the execution of the simulation through time. In our design, the

functions of the simulation executive are shared by the user interface and the model. The

model provides the basic ability to simulate to a specified goal time, and the user interface

controls more complex simulation executions, such as real time simulation. This was re-

quired due to the tight coupling of the user interface with simulation control. For example,

the interface is required to display the current simulation time as each time slice is exe-

cuted in the simulation. We leave it to future research to better integrate the simulation

executive into a graphical simulation environment.

Our design for the simulation benchmark is now complete. Due to the nature of

the benchmark, no design is necessary for the task management component. In the next

section we describe our implementations of the simulation benchmark.

5.3 Simulation Benchmark Implementations

This section describes our implementations of the simulation benchmark. All of our

implementations were built from the design described in the previous section. We created

an implementation of the simulation benchmark for the ObjectStore DBMS, and we also

created a non-persistent version of the benchmark. The non-persistent version does not

provide most of the capability required by the benchmark but does provide a measure of

how fast the simulation would execute if it was allowed to execute exclusively in memory.
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A screen-print of our simulation benchmark implementation is shown in Figure 21. This

figure shows the ObjectStore DBMS version of the benchmark.

5.3.1 ObjectStore Implementation. The first implementation of the simulation

was done using the ObjectStore DBMS. With our experience developing the 001 bench-

mark in ObjectStore, the implementation was reasonably simple. ObjectStore provided

inheritance in the same manner as the C++ programming language and the hierarchy

required by our simulation benchmark design was not difficult to implement.

5.3.2 Non-Persistent Implementation. The non-persistent implementation of the

simulation benchmark was developed from the ObjectStore version of the benchmark. Due

to the close ties between ObjectStore and the C++ language, we were able to remove all the

database commands and execute the program as a stand alone C++ program. The non-

persistent version of the benchmark is interesting because it represents the current typical

method of simulation execution (where all the simulation data structures execute only

in memory). The non-persistent version of the benchmark is not a valid implementation

of the benchmark because it provides no support for multi-user use, nor for saving the

simulation results. It does provide us with a yardstick to measure the performance cost

for the additional functionality of an object-oriented DBMS.

5.3.3 Itasca and Matisse. We did not complete implementations of the simulation

benchmark for Itasca or Matisse due to time constraints.

5.3.4 Multiple Object Model Problem. Using Motif in the C++ programming

language along with an object-oriented DBMS required an understanding of several differ-

ent object models. The C++ programming language provides an object model. The Xt

toolkit (the basis for Motif programming) uses a different object model based upon the

use of coding conventions. This plethora of object models adds unnecessary complexity

to the task of program development and made our task of implementing the simulation

benchmark more time consuming than anticipated.
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Figure 21. The Simulation Benchmark Program (ObjectStore Version)
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5.4 Summar,

This chapter has described the simulation benchmark developed for this research.

The specification for the simulation benchmark was described. Then our design for the

benchmark was given. Finally, each implementation we developed for the benchmark

was described. The next chapter, Chapter VI, examines our results from running the

benchmarks.
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VI. Benchmark Results Analysis

This chapter examines our results of the 001 benchmark and the simulation bench-

mark. The configuration used for both benchmarks is shown in Table 4. For all our

benchmark runs, two Sun SPARCstation 2 workstations were used. The first workstation

acted as the database server and the other workstation as a client. On the server machine,

the first hard disk held the operating system, the second held the database software, and

the third held the benchmark databases. On the client workstation, the first hard disk

held the operating system and the second held the ObjectStore client software. Neither

Itasca nor Matisse required any software to be on the client machine (except the bench-

mark program). We first present our results for the 001 benchmark and then our results

for the simulation benchmark.

6.1 001 Benchmark Results

In this section we examine our results from the 001 benchmark. The 001 bench-

mark was implemented on the Itasca, Matisse, and ObjectStore object-oriented DBMSs as

described in Chapter IV. We ran the benchmark in the following configurations:

"* Small remote database

"* Small local database

"* Small remote database with no locality of reference

"* Small local database with no locality of reference

"* Large remote database

"* Large local database

Only the small remote and the large remote configurations are required by the 001 bench-

mark specification. The other configurations are optional [9].

For each benchmark configuration (such as the small local database configuration),

five complete benchmark runs were made. The average of the five benchmark results is

reported. Complete data for our 001 benchmark results is contained in Appendix B and

a statistical analysis of our results is presented in Appendix C.
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Table 4. AFIT Benchmark System Configuration

Server Machine prowler Sun SPARCstation 2
Operating System Sun/OS 4.1.3
Memory 48 Mbytes
Swap 96 Mbytes
Hard Disks 200 Mbyte

200 Mbyte
200 Mbyte

Client Machine doc Sun SPARCstation 2
Operating System Sun/OS 4.1.3
Memory 48 Mbytes
Swap 96 Mbytes
Hard Disks 200 Mbyte

200 Mbyte

DBMS Software Itasca Version 2.2
Matisse Version 2.2.0
ObjectStore Version 2.0.1

The next four sections describe our results for the small database configuration.

The small database for the 001 benchmark contains 20,000 parts and 60,000 connections

between those parts. All the reported values for elapsed time in our results are in seconds.

6.1.1 Small Remote Database Results. The most important results for the 001

benchmark are shown in Table 5, and graphically in Figure 22. The 001 benchmark total

is identified in Table 5 by L+T+I, which represents the sum of the lookup, traversal,

and insert measurements. ObjectStore is clearly the best performer. The small remote

database is the configuration which Cattell states most object-oriented DBMS applications

require [9]. 'This configuration models a network client working with a database server

located on a remote computer system. ObjectStore is 972% faster than Itasca and 243%

faster than Matisse in our cold results. For the warm results, ObjectStore is 9551% faster

than Itasca and 2391% faster than Matisse.' An analysis of our results, which is detailed

in Appendix C, shows that they are statistically significant at the a = 0.05 level.

1To calculate that database A is n% faster than database B, we used the following formula: . =
"1iMCA

1 + .0 This definition is documented by Hennessy and Patterson in [18).
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Table 5. 001 Benchmark Results for Small Remote Database

Lookup Traversal Insert L+T+I
DBMS IF-Cold Warm Cold Warm Cold Warm Cold Warm

Itasca 277.278 213.162 347.040 251.136 134.765 129.935 759.083 594.233
Matisse 125.982 68.448 53.111 35.387 64.076 49.507 243.169 153.382

ObjectStore 28.191 1.239 26.322 1.734 16.285 3.184 70.798 6.157

O4oStore Cold

ObjectStore Warm

Matsse Cold

MaftiseWarm

ftsa Cold

Rasca Warm

0 50 100 150 200 250 300 350
Elqlsed Time in Seconds

Figure 22. 001 Benchmark Results for Small Remote Database
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We were surprised at the large differences between the benchmark results. Cattell

proposed a goal of about 10 seconds for each measurement (30 seconds for the L+T+I

benchmark total) [9]. ObjectStore meets this objective for its warm results. The Itasca

and Matisse results are much to slow to meet this goal even in the warm results, although

Matisse is closer than Itasca.

There is a much larger change between the cold and warm results for ObjectStore than

for Itasca and Matisse. From Table 5 we can calculate that the warm results are 28% faster

than the cold results for Itasca, 59% faster than the cold results for Matisse, and 1050%

faster than the cold results for ObjectStore. We believe that this is due to the virtual

memory mapping supported by ObjectStore. Once data is read from the ObjectStore

server it is accessed at memory speeds. Another reason for the difference is the benchmark

database size. The benchmark database is smaller (see Figure 13) in ObjectStore than it

is in Itasca or Matisse. If an application's database takes up less total storage then more

of it can be cached in a fixed amount of memory.

The next section examines results for the small database size, but with the benchmark

program run locally rather than remotely.

6.1.2 Small Local Database Results. After examining the results for the remote

case, it is interesting to examine results for a local client. In the local configuration,

the client executes on the same computer as the database server. Our results for this

configuration are shown in Table 6, and graphically in Figure 23. Although we do see an

improvement in the results for Itasca and Matisse, ObjectStore remains the clear winner.

ObjectStore is 734% faster than Itasca and 199% faster than Matisse in our cold results.

For the warm results, ObjectStore is 7797% faster than Itasca and 1784% faster than

Matisse. The results are statistically significant at the a = 0.05 level.

The performance of Itasca and Matisse improved in the local configuration. Itasca

was 20% faster for the cold results and 12% faster for the warm results. Matisse was 7%

faster for the cold results and 21% faster for the warm results.

In a very surprising result, ObjectStore was faster in the remote configuration than

in the local configuration. This was true for all the 001 benchmark measures. Our results
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Table 6. 001 Benchmark Results for Small Local Database

D SLookup Traversal 1 Insert fl L+T+I
DBMS Cold Warm Cold Warm Cold Warm I Cold Warm

Itasca 251.064 200.107 248.967 211.769 130.855 120.430 630.886 532.306
Matisse 91.652 36.058 70.499 41.030 64.279 49.899 226.431 126.987

ObjectStore 28.859 1.274 29.029 2.204 17.791 3.264 75.680 6.741

ObjctSoRe ColdI

Objecttore Wanm

Matim Warm,

haooa Cold

Itabca Warm _ _ _ _ _ _ _ _ _ _ _

0 50 100 150 200 250 300
ElMed Time in Seconds

*Lookup[- DTwV..aE k

Figure 23. 001 Benchmark Results for Small Local Database
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Table 7. 001 Benchmark Results for Small Remote Database (NLOR)

1 Lookup Traversal Insert L+T+I
DBMS Cold Warm I Cold Warm Cold Warm Cold Warm
Itasca 252.481 203.955 380.217 301.063 206.002 160.953 838.700 665.972

Matisse 146.186 78.955 120.816 63.672 88.340 61.556 1355.342 204.182
ObjectStore 1 29.765 1.250 39.574 1.766 33.045 9.919 102.384 12.936

show the remote configuration was 6.9% faster than the local configuration for the cold

time and 9.49% faster than the local configuration for the warm time. However, when we

examined these results statistically (see Appendix C), we found that there is not enough

evidence to prove that this finding is significant at the a = 0.05 level. It is possible that

competition between the client program (our benchmark) and the database server for the

same computer's resources may have caused this result.

6.1.3 Small Remote Database (NLOR) Results. The 001 benchmark requires

that the database be built with a large degree of locality of reference. 90% of the con-

nections between parts must be randomly connected to 1% of the closest parts. Parts are

close if they have numerically similar part identifiers [9]. To further investigate the per-

formance of our three databases, we removed this requirement. Our results for the small

local database with no locality of reference (NLOR) database configuration are shown in

Table 7, and graphically in Figure 24. ObjectStore is still the top performer, even without

the locality of reference requirement. ObjectStore is 719% faster than Itasca and 247o

faster than Matisse in our cold results. For the warm results, ObjectStore is 5048% faster

than Itasca and 1478% faster than Matisse. The results are statistically significant at the

a = 0.05 level.

ObjectStore, in the warm results, is the most affected by the loss of locality of

reference. ObjectStore is 110% faster with locality of reference, Itasca is 12% faster with

locality of reference, and Matisse is 33% faster with locality of reference. For the cold

results, ObjectStore is 45% faster with locality of reference, Itasca is 10% faster with
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Figure 24. 001 Benchmark Results for Small Remote Database (NLOR)
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Table 8. 001 Benchmark Results for Small Local Database (NLOR)

11 Lookup I raversal Insert I L+T+I
DBMS Cold Warm Cold Warm Cold Warm I Cold Warm

Itasca 234.236 197.707 342.590 270.023 188.591 150.635 1765.417 618.365
Matisse 107.941 31.779 145.648 58.183 98.353 61.876 351.942 151.839

ObjectStore 33.249 1.312 44.217 1.792 39.102 11.914 1116.568 15.017

locality of reference, and Matisse is 46% faster with locality of reference. Itasca is affected

the least by the loss of locality of reference.

6.1.4 Small Local Database (NLOR) Results. Our results for the small local

database with no locality of reference database configuration are shown in Table 8, and

graphically in Figure 25. ObjectStore is the top performer. ObjectStore is 557/ faster than

Itasca and 202% faster than Matisse in our cold results. For the warm results, ObjectStore

is 4018% faster than Itasca and 911% faster than Matisse.

We experienced problems with Itasca in this benchmark configuration. The database

could not get enough system memory to execute the benchmark properly. We were only

able to complete a single benchmark run and obtain partial results for the other four runs

(see Appendix B). Itasca support was unable to help us solve this problem since it was a

limitation of our workstations. Hence, while we were able to show statistical significance

for the differences in the Matisse and ObjectStore results to the a = 0.05 level, this was

not possible for Itasca.

This concludes our results for the small database configuration. A summary of our

001 benchmark results is shown in Figure 9 for the small database configurations. Figure 9

shows all our results in terms of what percentage ObjectStore is faster than Itasca or

Matisse. The next two sections describe our results for the large database configuration.

The large database contains 200,000 parts and 600,000 connections between those parts.

6.1.5 Large Remote Database Results. Our results for the large database con-

figurations are not as complete as those obtained for the small database configurations.
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Figure 25. 001 Benchmark Results for Smell Local Database (NLOR)
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Table 9. Summary of 001 Benchmark Small Database Results

ObjectStore versus
Benchmark Configuration Itasca Matise

Small Remote cold Lookup 884% faster 347% faster
Traversal 1218% faster 102% faster
Insert 728% faster 293% faster
L+T+I 972% faster 243% faster

warm Lookup 17104% faster 5428 faster
Traversal 14383% faster 1941% faster
Insert 3981% faster 1455% faster
L+T+I 9551% faster 2391% faster

Small Local cold Lookup 770% faster 218% faster
Traversal 758% faster 143% faster
Insert 636% faster 261% faster
L+T+I 734% faster 199% faster

warm Lookup 15607% faster 2730% faster
Traversal 9508% faster 1762% faster
Insert 3590% faster 1429% faster
L+T+I 7797% faster 1784% faster

Small Remote cold Lookup 748% faster 391% faster
(NLOR) Traversal 861% faster 205% faster

Insert 523% faster 167% faster
L+T+I 719% faster 247% faster

warm Lookup 16216% faster 6216% faster
Traversal 16948% faster 3505% faster
Insert 1523% faster 521% faster
L+T+I 5048% faster 1478% faster

Small Local cold Lookup 604% faster 225% faster
(NLOR) Traversal 675% faster 229% faster

Insert 382% faster 151% faster
L+T+I 557% faster 202% faster

warm Lookup 14969% faster 2322% faster
Traversal 14968% faster 3147% faster
Insert 1164% faster 419% faster
L+T+I 4018% faster 911% faster
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We encountered problems with Itasca and Matisse when attempting to build the large

benchmark databases and were unable to complete large database measurements on the

Itasca DBMS.

Itasca, as was seen in the small local NLOR configuration, did not have enough

memory to load the large database. The Itasca database server would consume system

memory until the benchmark program, which was using memory from the same system,

would fail. In the attempts we made to build the large database in Itasca, failure would

occur after the program was allowed to run for about 27 hours. We estimated that a

remote build of the large database would have taken about 10 days but did not attempt

such a build due to the low probability of success.

We encountered a very different problem with the Matisse DBMS. Matisse writes

data to the disk without attempting to compact the data into the smallest space. There-

fore, large amounts of disk space are consumed during the creation of the 001 benchmark

database. To compact the disk space, a program called mtacollect_.ersionu must be ex-

ecuted on the database. For the small database configuration, we allowed the database

to be built and then ran the collect versions program. But for the large database, we did

not have enough disk space to follow this procedure. We worked with Matisse support

to come up with a solution and decided the only solution was to manually monitor the

database load. For the load, we allocated the entire 200 Mbytes of our database hard disk

to Matisse. The load was run until 90% of the Matisse database was filled, then the load

program was stopped (using the control-Z command). With the load stopped, the collect

versions program was executed to compact the disk space in use by Matisse. Using this

method we were able to build the large benchmark database in Matisse in about 1.5 weeks.

We were then able to execute the 001 benchmark measures.

We encountered no problems with the ObjectStore database for the large database

measures. We examine the remote results in this section and the local results in the next.

Our results for the large remote database configuration are shown in Table 10, and

graphically in Figure 26. ObjectStore is the best performer, but not by as wide a margin

as in the small database configuration. ObjectStore is 37% faster than Matisse in our cold
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Table 10. 001 Benchmark Results for Large Remote Database

11 Lookup Traversal Insert 11 L+T+I
DBMS Cold Warm Cold Warm Cold Warm Cold Warm

Matisse 245.811 216.350 231.703 214.405 119.756 110.767 577.456 535.937
ObjectStore 121.811 64.019 194.698 118.016 104.126 61.330 420.636 243.364

Table 11. 001 Benchmark Results for Large Local Database

II Lookup Traversal Insert 11 L+T+I
DBMS Cold Warm Cold Warm Cold Warm Cold Warm

Matisse 228.080 215.053 229.644 228.602 106.308 112.559 546.682 552.772
ObjectStore 105.463 56.753 183.473 155.877 70.533 45.905 359.469 258.535

results and 120% faster than Matisse in our warm results. The results are statistically

significant at the a = 0.05 level.

For ObjectStore the warm results are only 73% faster than the cold results. This

difference is much less than the 1050% improvement seen in the small database results. For

Matisse the warm results are only 8% faster than the cold results. Again, this difference is

much less than the 59% improvement seen in the small database results. We believe that

this difference is due to the larger size of the database working set. In the small database

configuration ObjectStore must have been able to hold most (or all) of the benchmark's

working set in the database cache, but was not able to do this for the large database

configuration.

6.1.6 Large Local Database Results. Our results for the large local database

configuration are shown in Table 11, and graphically in Figure 27. ObjectStore is again

the best performer. ObjectStore is 52% faster than Matisse in our cold results and 114%

faster than Matisse in our warm results. The results are statistically significant at the

a = 0.05 level.

As in the large remote configuration results, we see a much smaller difference between

the cold and warm results than for the small database results. For example, the warm
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results for ObjectStore are 39% faster than the cold results. For the same configuration of

the small database they were 1103% faster.

A summary of our 001 benchmark results is shown in Figure 12 for the large database

configurations. Figure 12 shows all our results in terms of what percentage ObjectStore is

faster than Matisse.

6.1.7 Benchmark Database Load Times. This section examines the time required

to build the 001 benchmark databases. The build times and database sizes for the small

database are shown in Table 13. Note that for our three DBMSs, there is a considerable

difference in both the amount of time required and the amount of disk space necessary.

The Matisse database required a much larger amount of disk space during the build, but

was compacted down to the size shown in Table 13 before the benchmark runs were made.

We noted the large amount of space overhead required by Itasca and Matisse. Cattell

estimated a size between 4 and 5 Mbytes for the small database. Only ObjectStore was

within this range [9].

The build times and database sizes for the large database are shown in Table 14.

6.1.8 Matisse Version Collection Results. To determine the effect of version col-

lection on the Matisse DBMS, we varied the delay allowed for version collection between

benchmark runs. For all our benchmark configurations using Matisse, we started the ver-

sion collection program after a run. Then, we immediately started the next run. However,

for the Small Local database configuration and the Small Remote (NLOR) database con-

figuration, we also tested with a 200 second delay to allow version collection. The results,

which were inconclusive, make it apparent that the version collection program does not

have priority over an application program (see Appendix B). Matisse support confirmed

this presumption by informing us that the version collection program runs with a very low

priority inside the Matisse server.

6.1.9 Reverse Thaversal Results. The 001 benchmark requires that a reverse

traversal be run as one of the measures. We indeed executed the reverse traversal on all our

configurations but found that the results varied tremendously. This variation was due to
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Table 12. Summary of 001 Benchmark Large Database Results

ObjectStore versus

Benchmark Configuration Matisse

Large Remote cold Lookup 102% faster
Traversal 19% faster
Insert 15% faster
L+T+I 37% faster

warm Lookup 238% faster
Traversal 82% faster
Insert 81% faster
L+T+I 120% faster

Large Local cold Lookup 116% faster
Traversal 25% faster
Insert 51% faster
L+T+I 52% faster

warm Lookup 279% faster
Traversal 47% faster
Insert 145% ftster
_ L+T+1 114% faster

Table 13. 001 Benchmark Load Times for Small Database

11 Itasca Matisse ObjectStore

Elapsed Time 1161738.459 I 9963.483 102.481
Database Size (in Kbytes) 12470.956 17338.000 4664.000

Table 14. 001 Benchmark Load Times for Large Database

Matisse ObjectStore

Elapsed Time ,'1.5 Weeks 23.130 Hours
Database Size (in Kbytes) 171400.000 45296.000
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Table 15. Summary of 001 Benchmark Results

B a ObjectStore versus

Benchmark Configuration Itasca Matisse

Small Remote cold L+T+I 972% faster 243% faster
warm L+T+I 9551% faster 2391% faster

Small Local cold L+T+I 734% faster 199% faster
warm L+T+I 7797% faster 1784% faster

Small Remote cold L-4 T+I 719% faster 247% faster
warm L+T+I 5048% faster 1478% faster

Small Local cold L+T+I 557% faster 202% faster
warm L+T+I 4018% faster 911% faster

Large Remote cold L+T+I 37% faster
warm L+T+I 120% faster

Large Local cold L+T+I 52% faster
warm L+T+I 114% faster

the random nature of the number of parts found in a reverse traversal. We have reported

the complete results for the reverse traversal in Appendix B but have not included them

in this chapter because there was no statistical significance to the results. The benchmark

specification recognizes the problems with the reverse traversal measure and did not include

it in the benchmark total.

This concludes our results for the 001 benchmark. A summary of our 001 bench-

mark results is shown in Figure 15. In the next section we present our results for the

simulation benchmark.

6.2 Simulation Benchmark Results

This section examines our simulation benchmark results. The simulation benchmark

was described in Chapter V. Two implementations of the simulation benchmark have been

completed to date: a persistent version using the ObjectStore DBMS and a non-persistent

version created in the C++ programming language.

The non-persistent version of the benchmark is not a valid implementation of the

benchmark because it provides no transaction model and is not persistent (it can not save

any data to disk). What the implementation does show is the performance which would
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be obtained by most current simulation systems (which run exclusively in memory). The

performance difference between the non-persistent version of the benchmark simulation

and the ObjectStore version provide a yardstick to measure the performance price paid for

the functionality gains provided by the object-oriented DBMS.

The next two sections describe the quantitative and the qualitative results for the

simulation benchmark. We only present results for the small benchmark database. Mea-

surements for the large database configuration were not done due to time constraints.

6.2.1 Quantitative Results. For each benchmark configuration five complete

benchmark runs were made. The average of the five benchmark measures is reported.

Complete data for our simulation benchmark results is contained in Appendix D and a

statistical analysis of our results is presented in Appendix E. A summary of our results is

shown in Table 16.

The ObjectStore version of the benchmark performs much better than we expected

compared to the non-persistent version. For the ObjectStore version of the benchmark,

the time slice defines the size of a transaction in terms of simulation time. It can be seen

from the hour run results in Table 16 that as the time slice is increased, the performance

loss due to use of the object-oriented DBMS decreases until it becomes almost negligible.

Note that the non-persistent version of the benchmark does not write any of the model

data to the disk, so additional time would be required to save the model data in an actual

simulation system. A graph of the hour run results by the time slice setting is shown in

Figure 28.

The ObjectStore results for the two post-processing measures are actually faster

than the non-persistent version of the benchmark. This is not surprising because the

ObjectStore DBMS did not have to write any data during these measures (they are both

read-only transactions on the database), and all the model data should have been in the

DBMS's cache.

6.2.2 Qualitative Results. Overall we found the ObjectStore DBMS to provide

a good platform for simulation system development. The DBMS provided a large amount
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Table 16. Simulation Benchmark Results for Small Database

ObjectStore ObjectStore
Benchmark Measure (Remote) (Loca Non-Persistent

Model Creation 0.645 0.633 0.007
Scenario Creation 4.184 4.285 1.603
Hour Run (TS = 60) 576.894 580.294 392.738
Hour Run (TS = 600) 485.341 490.979 389.576
Hour Run (TS = 1800) 476.418 482.764 388.308
Hour Run (TS = 3600) 474.981 477.213 387.685
Simulation Throughput 0.159 0.180 0.115
Version Creation 20.794 21.168 14.138
Map Creation 9.805 10.243 10.718
Report Creation 2.613 2.999 2.336

(1)600. . . . .. . . . . . . , -. . .
p 550 -- - - - - - - - - - - - - - - - - -

0' -1 . . . . ---. . . . . . . - --------------------.

"0

(D 4 50 -- ----------. . . . . . .
CI) 4 00  -------------.. . . ----- . . . . . . . . .

~3 0 0 -- - - - - - - - - - - - - - - - - - - - - -

E 250 -- ------------------------------------------

2W 0 - - - - -I - - -I -I -I

0 600 1200 1800 2400 3000 3600
Time Slice in Seconds

-w- ObjectStore (remote) -•- ObjectStore (local)
-o- Non-Persistent

Figure 28. Simulation Benchmark Hour Run Results by Time Slice Setting for Small
Database
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of functionality with a minimum of performance overhead. The following is a list of some

of the functional benefits provided by the ObjectStore DBMS to simulation systems:

" Similarity to the C++ Programming Language: Due to ObjectStore's close ties to the

C++ programming language, the ObjectStore version of the simulation benchmark

looks very much like a C++ program. The transaction model and the declaration of

persistent objects are the only major differences. This is only a benefit if a simulation

system is being developed in C++. It is a drawback if another language, such as

Ada, is being used for development.

"• Motif Interface: The ObjectStore DBMS interacted very well with the Motif user

interface developed for the simulation benchmark.

"* Multi- User Access to Model Data: ObjectStore controlled all concurrent access to

the database. When two executing versions of the simulation benchmark worked

with the same model, we encountered no consistency problems. For example, we

were able to execute the simulation on one workstation and update a map on a

remote workstation. To provide this type of multi-user concurrency control without

the object-oriented DBMS would have required a large amount of code (the non-

persistent version of the benchmark did not allow multi-user access). Multi-user

access is a major benefit of object-oriented DBMS use.

"* Browser Tool Use: The ObjectStore DBMS provides a graphical database browser

tool. We used this tool to examine the simulation benchmark database in an ad-hoc

fashion. We believe that graphical browser tools are useful for simulation systems.

6.3 Summar,

This chapter has presented our results for the 001 benchmark and the simula-

tion benchmark. Chapter VII presents conclusions and recommendations based upon our

benchmark results.
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VII. Conclusion and Recommendations

7.1 Overview

In this thesis we studied the performance of the Itasca, Matisse, and ObjectStore

object-oriented DBMSs. The 001 benchmark was developed and run on the three DBMSa.

A new benchmark, the AFIT Simulation benchmark, was developed and implemented on

the ObjectStore DBMS. In this chapter, we present our conclusions based upon the results

presented in Chapter VI and summarize some important lessons learned about benchmark-

ing. Finally, recommendations are presented for future research in object-oriented DBMS

performance.

7.2 Conclusions

This section presents our conclusions. These conclusions are based upon our work

with the three commercial object-oriented DBMS and our benchmark results which were

presented in Chapter VI.

"* ObjectStore was the top performer on the 001 benchmark. In the most critical

benchmark configuration, the small remote database, ObjectStore was the clear win-

ner. ObjectStore was 972% faster than Itasca and 243% faster than Matisse in our

cold results, and was 9551% faster than Itasca and 2391% faster than Matisse in our

warm results. In all the other configurations we tested, ObjectStore was the fastest

DBMS, although it was found that ObjectStore was the most sensitive to locality of

reference.

"* There is wide variation in the performance of commercial object-oriented DBMS.. In-

vestigating the performance of an object-oriented DBMS is critical. The commercial

systems available today are by no means a commodity item (as relational systems

are becoming). An object-oriented DBMS may have all the functional capability

required by an application, but its performance may be too slow.

"* A programming language interface to an object-oriented DBMS should be closely tied

to a specific language or not tied to any language at all. It proved to be very confusing
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to work with the Itasca C++ API which provided a blend of C++ functionality

with DBMSs functionality. We did not examine the Itasca Lisp API during this

research. The ObjectStore programming interface, which was closely tied to the

C++ programming language, and the Matisse programming interface, which was

not closely tied to a specific language, were much easier to learn and work with.

* Some object-oriented DBMSs provide sufficient performance to allow the creation of

persistent simulation environments. Our results on the simulation benchmark show

that for some areas of simulation, the loss of performance is acceptable given the

large gains in functionality. This is especially true if concurrent access to executing

simulation data is required, such as animating a running simulation.

7.3 Lessons Learned

The following is a summary of the valuable lessons learned during our benchmarking

effort:

" Use Vendor Customer Support: Without the aid of the support groups from Itasca,

Matisse, and ObjectStore, it is unlikely we would have solved many of the problems

we encountered. The current implementations of object-oriented DBMSs are very

complex pieces of system software which are difficult to understand, especially when

working with several of them at the same time. The aid of vendor customer support

is essential to any benchmarking effort.

We recommend sending benchmark source code through vendor customer support

several times because they are often very busy and will not always examine the

details of your implementation in just one look.

" Plan for Large Amounts of Data: We underestimated the large amount of data which

would be generated during this research effort. The data took a considerable amount

of time to consolidate and present in an understandable format. Some up-front

planning of the steps necessary to move benchmark data from the program output to

the final report will save a large amount of effort and confusion. We also recommend

that the process be automated to avoid transcription errors. For this research effort,
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custom C programs were used to filter the benchmark output into a spreadsheet [5]

for calculation. Then, a second custom C program was used to filter the calculated

results into W_• for our final report.

"* Limit Source Code 6ning: There is a point where making minor changes to the

benchmark source code to improve the performance is not effective. A large amount

of time can be spent working on the source code of benchmark implementations. We

recommend planning a final stop-work date for all the benchmark implementations

and working with the vendors to get the best product out by that time.

"* Disk Space: One of the recurring problems during our research was that of the

database disk filling up. We underestimated the amount of storage necessary to

work with three DBMS systems at the same time. We recommend determining how

much space will be necessary to hold the largest database required for a benchmark,

then doubling that size. The additional space may be used for backups, or may be

needed if one of the DBMSs requires more disk space than anticipated.

"• Coding Standards: We developed a set of coding standards at the very start of our

research. These standards helped provide consistency across all our implementations.

Consistency can help to ensure that implementations on different DBMSs are done

fairly.

7.4 Recommendations

The following are recommendations for areas of further research which we feel are

needed in object-oriented DBMS performance and simulation:

"* A larger simulation system should be built using the ObjectStore DBMS. Object-

Store consistently performed much better than Itasca or Matisse in the 001 bench-

mark and added very little performance overhead compared to the non-persistent

version in the simulation benchmark. ObjectStore should be investigated for use in

an actual simulation system.

"• The simulation benchmark should be extended to test the use of long transactions

and version management. The current ObjectStore implementation of the simulation
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benchmark is set up to allow multiple versions of a model, but the user interface does

not provide an interface to this functionality. This was partially due to time con-

straints and partially due to a lack of research into how a version control system can

be used by a simulation system. It is possible that the version management system

provided by object-oriented DBMSs to support long transactions could be useful in

the simulation domain or it may be that some changes to the version management

model (which was developed for engineering applications such as CAD and CASE)

need to be made.

7.5 Summary

Our 001 benchmark results for three commercial object-oriented DBMSs show that

users must be very wary when planning to use an object-oriented DBMS for any applica-

tion. Even though the DBMS may provide the functional capabilities required, the system

may not provide the level of performance required. Although our simulation benchmark

showed benefits from the use of an object-oriented DBMS in the simulation domain, further

investigation is necessary, especially in the area of version management.
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Appendix A. Object-Oriented Analysis and Design Notation Summary

This appendix summarizes the object-oriented analysis and design notations used

during this research. Figure 29 gives a summary of the Coad/Yourdon object-oriented

analysis (OOA) and object-oriented design (OOD) notations. This notation was presented

in the books Object-Oriented Analysis, and Object-Oriented Design [10, 111.

112



Coad/Yourdan OOA/OOD Notation Summary

Class-A-O4ect Class

Class-&-Object Name (top section) Class

Atitel Attrdbutes (middle section) Attributel
Attribut92 Attribute2

Services (bottom section) Serviosi
Service2 Service2

Generalization

Gen-Spec Wuo/e-Part Structure

Specialization1 Specialization2

Clss&-O:1c 1~ Instance Cosecti Tic,,s--Ojet

Sender Message Connectin Rcie

Subject or Design Component Note: In addition, Objet Stte DiSgm and ice

(may be expanded or collapsed) C my be uw f s Somm.

Figure 29. Coad/Yourdon OOA/OOD Notations
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Appendix B. Detailed 001 Benchmark Results

This appendix contains, in detail, the results obtained from our runs of the 001

benchmark. Benchmark results are included for the Itasca, Matisse, and ObjectStore

object-oriented DBMSs.

For each different benchmark configuration (object-oriented DBMS, database size,

and benchmark variation) five complete runs of the 001 benchmark were done. Five runs

were made rather than one to try to obtain a better picture of typical DBMS performance,

not just a single snapshot. This appendix contains both raw and summary results for all

benchmark configurations. Benchmark results for each configuration are reported using

three tables and two charts. The tables and charts are described below in the order which

they appear for each benchmark configuration.

" Summary Results Table: This table reports the cold and warm times for the lookup,

traversal, and insert measures of the benchmark, and the benchmark total (L+T+I).

These values are reported for the five complete benchmark runs. The average and

sample standard deviation of the five runs is given at the bottom of the table. All

the times reported in this table are in seconds.

" Benchmark Results Chart: This bar chart provides a clear picture of the average

benchmark results (recorded in the second from last line of the summary results

table). It provides a graphical picture of the percentage of time spent in each indi-

vidual measurement compared to the benchmark total (L+T+I). It is important to

note that the y-axis scale of this chart is different for each benchmark configuration,

so care must be taken when using this chart for comparisons.

" Normalized Reverse Traversal Results Table: This table reports the reverse traversal

results normalized so that they can be compared to the forward traversal results. The

layout of this table is the same as the summary results table. We decided to separate

the reverse traversal results into a separate table because they are not included in the

benchmark total (L+T+I). The formula for normalizing the reverse traversal results

was described in the 001 benchmark specification [9]. The normalization formula,

where Trt normalized represents the normalized reverse traversal result, is shown in
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Table 17. 001 Benchmark Load Times for Small Database

11 Itasca Matisse ObjectStore

Elapsed Time 1161738.459 9963.483 102.481
Database Size (in Kbytes) 12470.956 17338.000 4664.000

Table 18. 001 Benchmark Load Times for Large Database

11 Matisse ObjectStore

Elapsed Time -1.5 Weeks 83266.697
Database Size (in Kbytes) 171400.000 45296.COO

Equation 1 below.

In Equation 1 T,4 is the elapsed time measured and N, is the number of parts

actually found in a single reverse traversal measure. Nft is the number of parts

found in a single forward traversal measure, which for the 001 benchmark is always

3,280 parts. All the times reported in this table are in seconds.

"* Raw Benchmark Results Table: This table reports the raw results for the five bench-

mark runs. In fact, this is the exact output given by our benchmark program and was

automatically filtered into the form presented in this appendix to avoid transcription

errors. All the times reported in this table are in seconds.

"* Average Individual Benchmark Measures Chart: The 001 benchmark requires that

each measurement be performed 10 times for each complete iteration of the bench-

mark. These 10 runs are labeled Run 1 through Run 10 in this chart and in the raw

benchmark results table. Run 1 is reported as the cold result and the average of runs

2 through 10 is reported as the warm result. This chart conveys two things. First,

the L+T+I line displays the average total for each of the 10 runs. This line gives an

graphical picture of the the average benchmark total time throughout the 10 runs.

Second, the three bars displayed for each run provide a graphical view of the rela-

tionship between the individual benchmark measures to the L+T+I line throughout

the 10 runs. It is important to note that the y-axis scale of this chart is different
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for each benchmark configuration, so care must be taken when using this chart for

comparisons.

The database load times and the size required for the 001 benchmark database are

shown in Figure 17 for the small database and Figure 18 for the large database. The large

database build for Matisse could not be automated (due to a lack of disk space) and was

carried out in about 1.5 weeks.
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B. 1 001 Benchmark Results for the Itasca DBMS

This section reports our 001 benchmark results for the Itasca DBMS. Results for

the following database configurations are provided:

"* Itasca Small Remote Database - The results for this benchmark configuration are

reported in Tables 19, 20, and 21 and in Figures 30 and 31.

"* Itasca Small Local Database - The results for this benchmark configuration are

reported in Tables 22, 23, and 24 and in Figures 32 and 33.

"* Itasca Small Remote Database with No Locality of Reference (NLOR) - The re-

sults for this benchmark configuration are reported in Tables 25, 26, and 27 and in

Figures 34 and 35.

"* Itasca Small Local Database with No Locality of Reference - The results for this

benchmark configuration arc reported in Tables 28 and 29 and in Figures 36 and

37. The results for this benchmark configuration are limited because the Itasca

DBMS did not have enough memory to execute in this configuration. Only partial

benchmark runs completed and no reverse traversal measures ran to completion.
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Figure 30. Itasca 001 Average Benchmark Results for Small Remote Database

Table 20. Itasca 001 Normalized Reverse Traversal Results for Small Remote Database

Benchmark IICold Warm

2 4149.486 530.472
3 5182.592 313.930
4 267.115 825.788
5 650.879 1528.182

Average: II2100.134 643.968
Sample STD: 12376.051 547.861
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Figure 31. Itasca 001 Average Individual Benchmark Measures (and Benchmark Total)
Across the Ten Runs for Small Remote Database
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Figure 32. Itasca 001 Average Benchmark Results for Small Local Database

Table 23. Itasca 001 Normalized Reverse Traversal Results for Small Local Database

Benchmark P Cold Warm
1 227.666 211.203
2 4119.775 1071.200
3 5817.336 310.269
4 258.015 776.981
5 381.341 317.110

Average: 2160.827 537.353
Sample STD: 2633.055 370.426
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Figure 33. Itasca 001 Average Individual Benchmark Measures (and Benchmark Total)
Across the Ten Runs for Small Local Database
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Figure 34. Itasca 001 Average Benchmark Results for Small Remote Database (NLOR)

Table 26. Itasca 001 Normalized Reverse Traversal Results for Small Remote Database
(NLOR)

Benchmark 1 Cold Warm

1 303.841 424.245
2 438.734 1573.076
3 530.117 400.771

4 332.671 271.608
5 11401.202 309.705

Average: If 401.313 595.881
Sample STD: 89.726 549.883
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Figure 37. Itasca 001 Average Individual Benchmark Measures (and Benchmark Total)
Across the Ten Runs for Small Local Database (NLOR)
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B.2 001 Benchmark Results for the Matisse DBMS

This section reports our 001 benchmark results for the Matisse DBMS. Some bench-

mark runs were duplicated to determine the impact of the mts-collect-versions program,

required by Matisse to compact disk space in the database, on performance. Results for

the following database configurations are provided:

"* Matisse Small Remote Database - The results for this benchmark configuration are

reported in Tables 30, 31, and 32 and in Figures 38 and 39. The mts-collect-versions

program was executed after each benchmark iteration with no delay between the

execution and the start of the next benchmark iteration.

"* Matisse Small Local Database - The results for this benchmark configuration are

reported in Tables 33, 34, and 35 and in Figures 40 and 41. The mtscollecLnersions

program was executed after each benchmark iteration with no delay between the

execution and the start of the next benchmark iteration.

"* Matisse Small Local Database (200 second delay) - The results for this benchmark

configuration are reported in Tables 36, 37, and 38 and in Figures 42 and 43. The

mts.collect-versions program was executed after each benchmark iteration. A 200

second delay from the start of the version collection program to the start of the next

benchmark iteration was done to allow version collection without iterference from

the benchmark program.

"* Matisse Small Remote Database with No Locality of Reference (NLOR) - The

results for this benchmark configuration are reported in Tables 39, 40, and 41 and

in Figures 44 and 45. The mts.collect.versions program was executed after each

benchmark iteration with no delay between the execution and the start of the next

benchmark iteration.

"* Matisse Small Remote Database with No Locality of Reference (200 second delay)-

The results for this benchmark configuration are reported in Tables 42, 43, and 44

and in Figures 46 and 47. The mts.collect-versions program was executed after each

benchmark iteration. A 200 second delay from the start of the version collection
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program to the start of the next benchmark iteration was done to allow version

collection without iterference from the benchmark program.

"* Matisse Small Local Database with No Locality of Reference - The results for this

benchmark configuration are reported in Tables 45, 46, and 47 and in Figures 48 and

49. The mts-collect_'ersions program was executed after each benchmark iteration

with no delay between the execution and the start of the next benchmark iteration.

"* Matisse Large Remote Database - The results for this benchmark configuration are

reported in Tables 48, 49, and 50 and in Figures 50 and 51. Only four out of five

of the benchmark runs completed in this configuration due to problems with the

Matisse server.

"* Matisse Large Local Database - The results for this benchmark configuration are

reported in Tables 51, 52, and 53 and in Figures 52 and 53. Only four out of five

of the benchmark runs completed in this configuration due to problems with the

Matisse server.
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Figure 38. Matisse 001 Average Benchmark Remults for Small Remote Database

Table 31. Matisse 001 Normalized Reverse Traversal Results for Small Remote Database

Benchmark Cold Warm
1 44.402 40.358
2 65.864 44.055
3 70.291 88.096
4 67.583 77.150

5 56.491 39.075

Average: 60.926 57.747
Sample STD: 10.596 23.109
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Figure 40. Matisse 001 Average Benchmark Results for Small Local Database

Table 34. Matisse 001 Normalized Reverse Traversal Results for Small Local Database

Benchmark 11 Cold Warm
1 48.944 36.430
2 68.145 33.792

3 89.006 82.310
4 84.334 67.425
5 57.537 32.891

Average: I1 69.593 50.570
Sample STD: 1117.088 22.834
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143



0

1 C*oq 0 C4 9.g4 P-41

- *C0 -U -Ot Oo W-V
- 't.t-U O Lo o 1

c§eC4 q C4

0CDeLo Q v L
o4Ct- O 1- 0 0

cn qario " 1 1

00 o o c'c w f 1-

= O DhOOOO LeD 00 4

0 C4 "Pho~ cz L t

cn 4 ko t- r to e

404

(A'4C'

4a 0144



300

U)"(A 2 5 0 -- - - - - - - - - - - - -

0

CO

0-

Wi0

0~

Cold Warm

LEELookup [--Traverse E Insert I

Figure 42. Matisse 001 Average Benchmark Results for Small Local Database 200 Sec-
ond Delay for Version Collection

Table 37. Matisse 001 Normalized Reverse Traversal Results for Small Local Database
200 Second Delay for Version Collection

Benchmark .. Cold Warm

1 101.904 40.405
2 67.926 38.124

3 113.111 100.268
4 65.571 56.479

5 56.599 32.325
Average: II 81.022 53.520

Sample STD: 24.862 27.624
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Figure 43. Matisse 001 Average Individual Benchmark Measures (and Benchmark To-
tal) Across the Ten Runs for Small Local Database 200 Second Delay for
Version Collection
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Figure 44. Matisse 001 Average Benchmark Results for Small Remote Database
(NLOR)

Table 40. Matisse 001 Normalized Reverse Traversal Results for Small Remote Database
(NLOR)

Benchmark []Cold W Aarm
1~ 112.404 148.988

2 228.861 137.388
3 1256.711 83.885
4 113.683 71.195
5 151.021 71.305

Average:] 372.536 102.552
Sample STD: 496.526 37.676
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Figure 45. Matisse 001 Average Individual Benchmar Measures (and Benchmark To-
tal) Across the Ten Runs for Small Remote Database (NLOR)
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Figure 46. Matisse 001 Average Benchmark Results for Small Remote Database
(NLOR) 200 Second Delay for Version Collection

Table 43. Matisse 001 Normalized Reverse Traversal Results for Small Remote Database
(NLOR) 200 Second Delay for Version Collection

Benchmark Cold Warm

1 108.797 149.511
2 231.839 133.387
3 2148.554 88.179
4 143.861 74.118
5 162.090 75.978

Average: 559.028 104.235
Sample STD: 889.702 34.868
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Figure 47. Matisse 001 Average Individual Benchmark Measures (and Benchmark To-
tal) Across the Ten Runs for Small Remote Database (NLOR) 200 Second
Delay for Version Collection
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Figure 48. Matisse 001 Average Benchmark Results for Small Local Database (NLOR)

Table 46. Matisse 001 Normalized Reverse Traversal Results for Small Local Database
(NLOR)

Benchmark if Cold Warm

1 89.274 129.500
2 343.966 242.441

3 1869.751 96.081
4 267.905 63.348
5 378.278 76.351

Average: 589.835 121.544
Sample STD: 724.153 72.036]
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Figure 49. Matisse 001 Average Individual Benchmark Measures (and Benchmark To-
tal) Across the Ten Runs for Small Local Database (NLOR)
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Figure 50. Matisse 001 Average Benchmark Results for Large Remote Database

Table 49. Matisse 001 Normalized Reverse Traversal Results for Large Remote Database

Benchmark 11 Cold Warm

2 f-282.248 502.245

3 306.191 268.199
5 1243.775 626.545

Average: [ 277.405 465.663
Sample STD: 31.489 181.952
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Figure 51. Matisse 001 Average Individual Benchmark Measures (and Benchmark To-
tal) Across the Ten Runs for Large Remote Database
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Figure 52. Matisse 001 Average Benchmark Results for Large Local Database

Table 52. Matisse 001 Normalized Reverse Traversal Results for Large Local Database

Benchmark Cold Warm
2 1 297.678 921.744

3 298.225 301.901
5 247.150 560.243

Average: 281.018 594.629
Sample STD: 29.332 311.349
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Figure 53. Matisse 001 Average Individual Benchmark Measures (and Benchmark To-
tal) Across the Ten Runs for Large Local Database
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B.3 001 Benchmark Results for the ObjectStore DBMS

This section reports our 001 benchmark results for the ObjectStore DBMS. Results

for the following database configurations are provided:

"* ObjectStore Small Remote Database - The results for this benchmark configuration

are reported in Tables 54, 55, and 56 and in Figures 54 and 55.

"* ObjectStore Small Local Database - The results for this benchmark configuration

are reported in Tables 57, 58, and 59 and in Figures 56 and 57.

"* ObjectStore Small Local Database (second complete run) - The results for this

benchmark configuration are reported in Tables 60, 61, and 62 and in Figures 58

and 59.

"* ObjectStore Small Remote Database with No Locality of Reference (NLOR) - The

results for this benchmark configuration are reported in Tables 63, 64, and 65 and in

Figures 60 and 61.

"* ObjectStore Small Local Database with No Locality of Reference - The results for

this benchmark configuration are reported in Tables 66, 67, and 68 and in Figures 62

and 63.

"* ObjectStore Large Remote Database - The results for this benchmark configuration

are reported in Tables 69, 70, and 71 and in Figures 64 and 65.

"• ObjectStore Large Local Database - The results for this benchmark configuration

are reported in Tables 72, 73, and 74 and in Figures 66 and 67.
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Figure 54. ObjectStore 001 Average Benchmark Results for Small Remote Database

Table 55. ObjectStore 001 Normalized Reverse Traversal Results for Small Remote
Database

Benchmark Cold Warm

1 15.969 15.881
2 5809.241 2.794
3 11.617 1.993
4 17.484 1.842

5 22.339 1.409

Average: 1157.330 4.784
Sample STD: 2590.438 6.224
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Figure 55. ObjectStore 001 Average Individual Benchmark Measures (and Benchmark
Total) Across the Ten Runs for Small Remote Database
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Figure 56. ObjectStore 001 Average Penchmark Results for Small Local Database

Table 58. ObjectStore 001 Normalized Reverse Traversal Results for Small Local
Database

Benchmark II Cold Warm

1 21.565 15.664
2 10433.572 2.835
3 22.718 1.291
4 26.808 2.140
5 37.703 1.912

Average: jI 2108.473 4.768
Sample STD: 4653.876 6.116
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Figure 57. ObjectStore 001 Average Individual Benchmark Measures (and Benchmark
Total) Across the Ten Runs for Small Local Database
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Figure 58. ObjectStore 001 Average Benchmark Results for Small Local Database
(second)

Table 61. ObjectStore 001 Normalized Reverse Traversal Results for Small Local Data-
base (second)

Benchmark Cold Warm

1 21.292 16.361
2 10177.650 2.803

3 21.662 1.434
4 27.452 2.146
5 39.282 1.859

Average: 2057.468 4.921
Sample STD: 4539.326 6.415
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Figure 60. ObjectStore 001 Average Benchmark Results for Small Remote Database
(NLOR)

Table 64. ObjectStore 001 Normalized Reverse Traversal Results for Small Remote
Database (NLOR)

Benchmark Cold Warm

1 8.168 25.419
2 191.780 31.861
3 101.563 2.168
4 28.905 1.554
5 61.583 2.856

Average:l 78.40-0 -12.77U2
Sample STD: 72.555 14.671

182



t- LoW8vvv8" 4L Dt

o 0O 0 ~00 -4 -8t - DL D0t

-4 14 Cý .4 44 o; .i 1 ; * -4, v-
4  

r-4 M, v-4 -'4 -'0 -4 v-4 -4* -'4

Z 0 '-4~ 0 m = t- M L*m w Cm
C4 0~-a 0w V

-4 -4 OW ~4 v-4-4 -4 -4 -
4 '-40 -4W4-4 LO 4 y- -4 Ob-

t- 4 ý4C 4 " -V 4 C -C

-4- L 4 -4-;0 -4 -; 4 4 C l

m mt- 0 CD 0 D C 4Mk - -4' - L

$4

W 183



120

Co

0 0100 --- ------------------------------ ----------
C
0

~184

E

CO

Run I Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

-i-L+T+I EM Lookup E:] Traverse U Insert

Figure 61. ObjectStore 001 Average Individual Benchmark Measures (and Benchmark
Total) Across the Ten Runs for Small Remote Database (NLOR)
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Table 67. ObjectStore 001 Normalized Reverse Traversal Results for Small Local Data-
base (NLOR)

[ Benchmark II Cold Warm]
1 19.324 47.308
2 227.614 35.472
3 121.962 2.120

4 45.424 1.661
5 106.063 2.388

Average: 104.077 17.790
Sample STD: 80.945 21.948

186



M -J40 40 g o-4 T-4m 4mmT- 4 wO 4w O 4 t- 4

ý4- a6_c_ _ ;ý 6 ý ;4 6ý

0-

14 0 qqv m " -4 qdiCD

z r- CD7.4" 8 m o C4C4 -4 4O -48 e.t-4 m .- CD Lo ML C DC )Mt

- V-4

-4 "4 r-4 -

-4 - -4-4 r-4

s. La 00 Dfvt -0 - M-*t 4 9W0
.0 0QI DO 4 40 OC 00 v4VC hP4C
go Cý cqC qC Tt:C ýUýI ýk tI 3 ýCc-IT

4- ý 4 40 4ý4r4 CD -4CD 4(D- Q v- D 4(D-

o4 -4r r-4

m rt 4L ý4 V* b- C4t 40 *MC L Vr4L 4L

- i o e -q4 M 0 oC4L 4 0r 4C 494t

= q -4 L3 t w 4 xq a t ý4 o t

4) r qC! .

4 4 r4 = 0 4 -4r- 4ý ý1874Cl



120

C

/80

C/

6 -- -----------------------------------------
E

118

"040
Ru u u u u Rn6Rn7Rn8Rn9Rn1

Totl)Acos the2 Ten Runs frun Small Local Databse (LRu)u

188



+ C4 e C4C4 ~0tC4

tc v4 c -ao c*c

t- 10qt tt-

at 49-4 Cq 4 C-4

t- M- t- t-4 0

0 q v4 Ci £0CI0

Op 4 C 4 T- O 4C
0 4 00 t-: 0

00 tcqci t-0 0

C4 4m O q t- wt-0 Ci--t-~Ct
to -000to0 C4 OD 4

1- C4 0t-t- 4 00C.0 t- V4 qV M

to ___m C

V-4 V- C4I P- .4 V-4 V

18



500

400-- .. . • :- - - ,,- --- -- -- -- -- -- -- --
4)
CO0 0

0
I)l
0-

C1-00--------

-o-

Cold Warm

IM Lookup I--ITraverse M insert

Figure 64. ObjectStore 001 Average Benchmark Results for Large Remote Database

Table 70. ObjectStore 001 Normalized Reverse Traversal Results for Large Remote
Database

Benchmark ]]Cold Warm

1 236.755 187.308
2 277.469 469.744
3 220.835 195.891

4 8785.680 584.968
5 342.571 204.768

Average: 01972.62 328.536

1Sample STD: 13808.883 _186.115
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Figure 65. ObjectStore 001 Average Individual Benchmark Measures (and Benchmark
Total) Across the Ten Runs for Large Remote Database
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Figure 66. ObjectStore 001 Average Benchmark Results for Large Local Database

Table 73. ObjectStore 001 Normalized Reverse Traversal Results for Large Local
Database

Benchmark Cold Warm

1 285.299 277.239
2 294.898 638.452
3 291.708 291.331
4 17787.702 679.028
5 11 329.497 291.428

Average: 3797.821 435.496
Sample STD: 7820.600 204.379
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Figure 67. ObjectStore 001 Average Individual Benchmark Measures (and Benchmark
Total) Across the Ten Runs for Large Local Database
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Appendix C. Statistical Analysis of the 001 Benchmark Results

To determine if the differences in the 001 benchmark results were meaningful, we

ran a small-sample test of hypothesis for the difference between population means on our

results. The statistical test used in this appendix was described by McClave and Benson

in [26].

For the 001 benchmark results, we were interested in determining if a difference

existed between results from two different databases on the same benchmark configuration

or the same database on two different benchmark configurations. For example, is the mean

lookup time for the ObjectStore DBMS different than the mean lookup time for the Itasca

DBMS, and if so, which is faster. The population mean p for our benchmark results is

unknown, we only know the sample mean 7 for our five runs. Therefore, assigning p1 to

be the population mean of one of the results and /2 to be the population mean of the

second, we wanted to detect a difference between /i and A2 if and only if a difference

exists. Therefore, we tested the null hypothesis shown in Equation 2,

H 0 : (61 - /2) = 0 (2)

against the alternative hypothesis shown in Equation 3.

Ha : (•1 - 02) # 0 (i.e.,either it > P2 or /2 > Al) (3)

To perform this test, we first calculated the test statistic using Equation 4. In Equation 4,

n is the number of samples taken (which was always 5 for our work), Y is the sample mean,

and s is the sample standard deviation.

t =IT - -9)- 0 (4)
(-,-1)o(+(n2-1)o( + (

The test statistics calculated for the Small Remote database results are shown in Table 75.

The test statistics calculated for the Small Local database results are shown in Table 76.

The test statistics calculated for the Small Remote database with no locality of reference

results are shown in Table 77. The test statistics calculated for the Small Local database
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with no locality of reference results are shown in Table 78. The test statistics calculated

for the Large Remote database results are shown in Table 79. The test statistics calculated

for the Large Local database results are shown in Table 80. The test statistics calculated

to compare Matisse database results for test runs with no delay for version collection with

test runs allowing a 200 second delay are shown in Table 81. The test statistics calculated

to compare Matisse database results for a Remote client with a Local client are shown

in Table 82. The test statistics calculated to compare ObjectStore database results for a

Remote client with a Local client are shown in Table 83.

A calculated test statistic may be compared with the rejection region of our test.

The rejection region is determined from Student's t distribution. The degrees of freedom

used for our test was 8 (n, + n2 - 2 = 5 + 5 - 2 = 8) and we choose an a of 0.05. The

rejection region for our test was t < -ta or t > t_ where ta is based on 8 degrees of

freedom. Hence, we can make one of the following conclusions:

"* The first benchmark result is faster than the second benchmark result if t < -2.306

"* The second benchmark result is faster than the first benchmark result if t > 2.306

"* The sample evidence is insufficient to reject the null hypothesis at a = 0.05

Our test results are statistically significant at the a = 0.05 level of significance.

To allow the use of our statistical test, we had to assume that the population standard

deviation for both samples was equal. This assumption is probably reasonable because most

sample variation was due to random number variations, and system loading variations. The

random number variations were the same for all samples (the same random number streams

used for one group of benchmark runs, was used for them all). We controlled the system

load variations (operating system, etc.) by ensuring that our benchmark was the only

non-system job running on the computer during a benchmark run.
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Appendix D. Detailed Simulation Benchmark Results

This appendix contains, in detail, the results obtained from our runs of the simulation

benchmark. Benchmark results are included for the ObjectStore DBMS version of the

benchmark and the non-persistent version of the benchmark.

For each different benchmark configuration, five complete runs of the benchmark

were made. Five runs were made rather than one to try to obtain a better picture of

typical performance, not just a single snapshot. This appendix contains both raw and

summary results for all the benchmark configurations. Benchmark results are reported

using two tables and one chart. These are described below in the order which they appear

for each benchmark configuration.

" Summary Results Table: This table reports the times for all five runs of the simulation

benchmark. The average and standard deviation of the five runs is given at the

bottom of the table. All the times reported in this table are in seconds.

" Throughput Results Table: This table reports the observed actual time ratios during

the throughput measure. The time ratio of the simulation is defined as the ratio of

wall clock time to simulation time. The reported value for the throughput measure

is the 90th percentile of the samples, but this table also reports the geometric mean.

" Hour Run Results Chart: This chart provides a clear picture of the effect time slice

has on the hour run results. The time slice defines the transaction size for the

object-oriented DBMS. As the time slice increases, less transactions are run during

the simulated hour. It is important to note that the axis scales of this chart are

different for each benchmark configuration, so care must be taken when using this

chart for comparisons.
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D.O.1 Simulation Benchmark Results for the ObjectStore DBMS. This section

reports our results for the ObjectStore DBMS version of the simulation benchmark. Results

for the following database configurations are provided:

"* ObjectStore Small Remote Database - The results for this benchmark configuration

are provided in Tables 84 and 85 and in Figure 68.

"• ObjectStore Small Local Database - The results for this benchmark configuration

are provided in Tables 86 and 87 and in Figure 69.
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Table 85. ObjectStore Simulation Benchmark Throughput Results for Small Remote
Database

Throughput Samples

0.123 0.139 0.143 0.148 0.148
0.150 0.151 0.151 0.153 0.155
0.155 0.155 0.156 0.157 0.157
0.157 0.158 0.159 0.159 0.161

Geometric Mean: 0.151
90th Percentile: 0.159

580

0

0

C

0 5 2 0 -- - - - - - - - - - - - - - - - - - - - - -
~1E

10 500 -- - - -- - - - - - - - - - - - - - - - - -0

CL

0 600 1200 1800 2400 3000 3600
Time Slice in Seconds

Figure 68. ObjectStore Simulation Benchmark Hour Run Results by Time Slice Setting
for Small Remote Database
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Table 87. ObjectStore Simulation Benchmark Throughput Results for Small Local
Database

Throughput Samples

0.140 0.145 0.146 0.146 0.151
0.152 0.152 0.152 0.154 0.155
0.155 0.159 0.160 0.163 0.163
0.163 0.170 0.179 0.191 0.202

Geometric Mean: 0.159
90th Percentile: 0.180

600

"10 5 8 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C
0
C,)

6154 0 -- - - -- - - - -- - - - -- - - - -- -
(D

0~

0 600 1200 1800 2400 3000 360
Time Slice in Seconds

Figure 69. ObjectStore Simulation Benchmark Hour Run Results by Time Slice Setting
for Small Local Database
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D.O.2 Non-Persistent Simulation Benchmark Results. This section reports our

results for the non-persistent version of the simulation benchmark. Results for the following

database configurations are provided:

* Non-Persistent Small Database - The results for this benchmark configuration are

provided in Tables 88 and 89 and in Figure 70.
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Table 89. Non-Persistent Simulation Benchmark Throughput Results for Small Database

Throughput Samples

0.102 0.105 0.105 0.105 0.105
0.107 0.107 0.108 0.110 0.110
0.111 0.112 0.112 0.113 0.114
0.115 0.115 0.115 0.116 0.163

Geometric Mean: 0.112
90th Percentile: 0.1151

393

'0 392 -- -- - - - - - - - - - - - - - - - - - - -
C

0
0
a)

CO 39 1 -- - -- - - - - - - - - - - - - - - - - - -

E

0.

387

0 600 1200 1800 2400 3000 3600
Time Slice in Seconds

Figure 70. Non-Persistent Simulation Benchmark Hour Run Results by Time Slice Set-
ting for Small Database
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Appendix E. Statistical Analysis of the Simulation Benchmark Results

To determine if the differences in the simulation benchmark results were meaningful

we ran a small-sample test of hypothesis for th,3 difference between population means on our

results. The statistical test used in this appendix was described by McClave and Benson

in [261. This test was also used in Appendix C.

For the simulation benchmark results we were interested in determining if a difference

existed between results from two different benchmark configurations.

The calculated test statistic is compared with the rejection region of our test. The

test statistics calculated for the Small database results are shown in Table 90. The rejection

region was determined from Student's t distribution. The rejection region for our test was

t < -tt or t > tt where ta is based on 8 degrees of freedom. Hence, we can make one of

the following conclusions:

"* The first benchmark result is faster than the second benchmark result if t < -2.306

"* The second benchmark result is faster than the first benchmark result if t > 2.306

"* The sample evidence is insufficient to reject the null hypothesis at a = 0.05

Our test results are statistically significant at the a = 0.05 level of significance.

To allow the use of our statistical test, we had to assume that the population standard

deviation for both samples was equal.
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Appendix F. Benchmark Support Library

This appendix contains documentation and source code for the benchmark support

library developed for this research. This library was developed to speed implementation

of benchmark programs. The benchmark support library facilitated code reuse between

benchmark program implementations. The benchmark support library consists of routines

for measuring elapsed time, and routines for generating random numbers. The library

consists of the following four modules:

e The stopwatch module

* The dice module

* The ezpon module

o The pmmlcg U(O,1) pseudo-random number generator module

Figure 71 shows a Coad/Yourdon OOA diagram of the benchmark support library (see

Appendix A for a summary of the Coad/Yourdon OOA notation).

The code developed for the benchmark support library is in compliant with the coding

standards developed for this research. These standards are described in Appendix G.

F.1 The Stopwatch

Elapsed time is the performance measurement used by the 001 benchmark and

the simulation benchmark. To allow accurate measurement of elapsed time, a C++ class

called stopwatch was developed. The stopwatch class uses the system clock to obtain

accurate timing. The benchmarks used in this research only require accuracy to about a

millisecond, and to this level the system clock accuracy is reasonable. The basic timing

components of this class were also used in the 007 research project at the University of

Wisconsin-Madison [7].

The stopwatch class is used by creating an instance of the class (usually through

a declaration). Timing is started by calling the start method. Timing is stopped and

recorded by calling the stop method.
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Dice

Stopwetch Pmmlcg

Stopr. -Expon .rndst

Figure 71. OOA Diagram for the Benchmark Support Library

F.1.1 stopwtch. hh. The source code for the file stopwtch.hh is listed below.

I Sifndef __STOPWTCI..H

2 #define __STOPWCTCE.
3 /*

4 Mae

9 6 8 8 

#8 
8 5 8 8 5 8 8 8#

10 etle. # e a # 1 1 eaa I M

11 stopwtch.hh

12 Air Force Institute of Technology
13 Timothy J. Halloran
14 20 Nay 1993

15 NOTE: many of the techniques used in this support package came from
16 the "Support. C" package created by Carey, DeWitt, and Naughton
17 for the 007 benchmark (Objectivity implementation).
18 [007 Benchmark COPYRIGHT (C) 1993 Carey DeWitt laughton
19 Madison, WI U.S.A. ALL RIGHTS •UERYID]

20 Revisions:

220



21 15 Jux 1993 -TJN- Modified to include <sys/time.k> to kide mo&-portable
22 syateo timing.
23 *i
24 8include<sys/t ie.>

25 class stopwatch {
26 *tract timeval start-time;
27 struct timeval stopotime;
28 int clock-running;
29 public:
30 stopvatch( );
31 void start( ); starts timing
32 double stop( ); // stops timing. and returns the duration in seconds
33 );
34 Sendif ._STOP1TC._KD

F. 1. 2 stopwtch. cc. The source code for the file stopwtch.cc is listed below.
1 /0

2 ##"#
3 8 888 • 888 8 8 88 0
4 S # • 0 # 0 • 0 • 0 8 •

5 88888 # 8 8 88 88 8 8 8 88888#

6 • 8 # # 8 888 8 8 888888 8 8 8 8
7• 8 8 8 88 88888 8 8 8 88 8
888888 8 88 # 8 8 8 8888 9 8

9 stopwtch.cc

10 Air Force Institute of Technology
11 Timothy J. UBaloran
12 20 May 1993

13 OTE: many of the techniques used in this support package cae from
14 the "Support.C" package created by Carey, DeWitt, and Naughton
15 for the 007 benchmark (Objectivity implementation).
16 [007 Benchmark COPYRIGHT (C) 1993 Carey DeWitt Naughton
17 Madison, VI U.S.A. ALL RIGHTS RRSZRVED]

18 Revisions:
19 06 Jul 1993 -TJH- Changed all the debug output to use the "debug.hh" macros.
20 */
21 Sinclude<stdio.h>
22 ginclude<sys/time.h>
23 #include<dobug.hh>
24 #include"utopwtch. hh"

25 Idefine TRUR 1
26 *define FALSE 0

28 void stopwatch: :start( )
29 {
30 DEBUG-INIT( "STOPWATCH", "stopwatch: :start" );
31 DEBUGOUT( "entering", 1 );
32 if ( gettimeofday( &start.time, (struct timezone *)O ) ) {
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33 fpriatf( utderr, "KIRDA, [stopwatch: :start] failed call to gettimeofday( )\n" )
34
35 clock-.running a TRUE;
36 DUBUG_.OUT( spriatf( BUG, "seconds since Jan 1, 1970: %ld microseconds: %ld",
37 start..time-tv..sec, start-tiue.tv~usec ). 2 )
38)

40 double stopwatck::stop()
41 {
42 DRBUG..IIIT( "STOPWATCH", "stopwatch:: stop" )
43 DEBUG-.OUT( 'lentering", 1 );
44 // get the current time first (do error checking later)
45 if ( gettimeofday( &stop..time, (strict tinezone 0)0 ) ) {
46 fprintf( stderr, "EIROI~stopwatch:: atop] failed call to gettimeofday( Asn"
47 return( 0.0 )
48 }
49 IImake oure the clock was running
50 if (! clock-.running ) f
51 IIcan't stop the stopwatch before you start it
52 fprintf ( stderr, "UHROR (stopwatch::atop] stop called before start\n" )
53 return( 0.0 )
54 1
55 clock-.running -FALSE;

56 DEDUG-OUT( sprintf( BUG, "seconds since Jan 1, 1970: %ld microseconds: ld",
57 start..time.tv..sec, start..tine-tv..usec ), 2 )
58o I compute and return the duration
59 double seconds w double( stop..time.tv..sec - start-time.tv-sac )
60 double mnicro-.seconds a double( stop..tine.tv..usec - atrt-.time.tv..usec )
61 if ( micro~seconds < 0.0 ) (
62 micro-.seconds -1000000.0 + mic-ro-seconds;
63 seconds--;
64
65 return( seconds + mnicro-.seconds/1000000.0 )
66

65 stopvatch::stopwatch()
69 f
70 DEBUG..IIITC "STOPWATCH". "stopwatch: :stopwatch" )
71 DEBUG.OUT( "entering", 1 );
72 // when an object is first created, the clock is not running
73 clock..running - FALSE;
74

F.2 The Dice Module

The dice module is used in all the benchmark implementations in this thesis. It is

used to create pseudo-random numbers for the benchmark programs.

F. 2.1 dice. hh. The source code for the file dice.hh is listed below.
1 tit ndef _DICK...f
2 *dsfine ....DICE..HH
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3 /0

4 8888
5 S 8S 88 888

7 8 8 # 8
68 8 9 8
98 8 8 8 8

10 88 8 888 88888

11 dice.hk

12 Air Force Institute of Technology
13 Timothy J. Halloran
14 18 Aug 1993
15 */
16 long roll( long low, long high, int strem );
17 Sendif __DICEBE

F.2.2 dice.cc. The source code for the file dice.cc is listed below.
1 /*

2 888888

5 8 8 8 8 88
6 # 8 8 8
78 8 8 8 88
8 888888 8 88r88 m8888

9 dice.cc

10 Air Force Institute of Technology
11 Timothy J. Halloran
12 18 Aug 1993
13 0/
14 Sinclude<stdio.h>
15 #iuclude<pmlcg.h>
16 Sinclude<debug.hh>
17 8include"dice.hh"

19 long roll( long low, long high, int stream )
20 {
21 DEBUGIIIT( "DICE", "roll" );
22 DEBUG.-OUT( "entering", 1 );

23 // return a random integer between "low" and "high" (inclusive)

24 // check for a bad input parameter
25 if ( high < low ) return low;
26 // pm.lcg.rand( mnt stream ) returns non-negative floating-point
27 // values uniformly distributed over the interval (0,1)
28 long result - low + (long)( pmlcgrand( stream ) * (double)( high + 1 - low ) );
29 DUBUGOUT( sprintf( BUG, "result %d from stream Ud1, result, stream), 2 );
30 return( result );
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31 1

F.3 The Expon Module

The eZpon module is used by the simulation benchmark to produce random numbers

with an exponential distribution.

F.3.I ezpon.hh. The source code for the file ezpon.hh is listed below.
1 Sifudef _.-EPOII.l

2 *define __EXPONIH_
3 /*

4 88#8888
5 8 8 88888 088 8 8
6 # S " # r

7 88888 to 8 8 8 8 8 8
8 8 8 # 8 8 88
9 88 # 8 8888

10 8888888 S • 8 8888 • 8

11 expon.hh

12 Air Force Institute of Technology
13 Timothy J. Halloran
14 31 Aug 1993
15 */
16 double expou( double mean, int stream );
17 Sendif __.EXPON-E

F.3.2 expon.cc. The source code for the file ezpon.cc is listed below.
1 /,

2 88#8888
3 8 8 8 88888 8S88 8 8
4 • S S • S S I

5 88888 88 8 8 S 8 8 8
6 8 88 88888 8 8 8 88
7 #8 • 8 8 8 s
8 8888888 8 8 8 8888 8 8

9 expon.cc

10 Air Force Institute of Technology
11 Timothy J. Halloran
12 31 Aug 1993
13 */

14 Sinclude<stdio.h>
15 Uincludeftath.h>
16 #include<puilcg.h>
17 #include<debug.hh>
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18 Sinclude"expon.hh"
19 Sinclude"dice.hh"
20 /I////II/////I////II/I/I///I/////I/I///////I//////////////////I//I/////

21 double ezpon( double mean, int strem )
22 {
23 DIBUG.INI( "RIPON", "expon" );
24 DUBUG.OUT( "entering", 1 );

25 return an exponential random variate with mean "moa"
26 // pmlcg.rand( int stream ) returns non-negative floating-point
27 // values uniformly distributed over the interval (0,1)
28 return -mean * log( (double)pmlcgrand( strea ) );
29 }

F.4 A U(0,1) Random Number Generator

Both the dice module and the expon module rely upon the generation of random

numbers over U(0,1). The U(0,1) pseudo-random number generator used for all the pro-

grams in this research comes from the book Simulation Modeling and Analysis by Law and

Kelton [24]. We decided to use this code after running some of the statistical tests for a

U(1,0) random number generator described in by Law and Kelton. The UNIX system func-

tion drand48( ), and the random number generator described by Park and Miller in [30]

(which was used by Cattell and Skeen in the original 001 benchmark implementations [9D)

were considered for use, but the generator described by Law and Kelton appeared to be

superior.

F.4.1 pmmlcg.h. The source code for the file pmmlcg.h is listed below.

1 ftfndef _._PNLCG_H
2 tdefine __PWMLCG_
3 /*

4 8888 8 8 8 8 8 888 88
58 888 88 88 8 88 8
6 8 888#8888 88 8 #
7 8888 8 8 88 8 88 8 8888
8 8 8 88 88 8 # 8
9 8 8 88 #8 # 88 8

10 8 8 # 8 #888888 88888 8888

11 888

12 8 # 88 8 8 #8888 888# # #
13 8 8 8 8 8#8 8 8 88
14 88#8# # 8 8 8 # # 8 8 # 8 8
15 8 8 8 888#8 8 8 # 8 8 # #
16 # 8 8 # 8 88 8 8 8 8 # 8
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17 8 S 8 8 8 8 88888 8888 8 8

18 8 8

19 88 8 8 8 8 8 88888 88II 88888
20 888 8 8888 8 # # # # 8
21 8 8 # 8 # 888 88888 88888 8 #
22 S # # # # # # # # 888M8
23 # 88 #8 #8 #8 8 8
24 8 8 888 # 8 88888 88888 8 8

26 lllll

26 # 8 88888 # # 888888 8888 88 8888 8888 88888
27 8 8 8 # # 8 8 8 # 8 # #
28 8 8888 #i8 # 88888888# 8 8 # 8 8 8 8
298 88 8 #88 #8888 888 # # # 888888
30 88 888# 888 # 8 8 8 # #

31 8888 888 8 8 8 8 8 88 # 8 8888 8 8

32 *I
33 Sifdof __cplusplus
34 extern "C" {
35 #*ndif
36 float pmlcg-rand( int stream );
37 void pamlcg.randst( long zest, int stream );
38 long pamcg.randgt( int stream );

39 #ifdef __cplusplus
40 }
41 #endif
42 #*ndif __PMMLCGH

F.4.2 pmmlcg.c. The source code for the file pmmlcg.c is listed below.

1 /*

2 888888 8 8 8 8 88888 .8888
3 8 # 8# 8# 8# 88 8 # 8 8
4 8 8 8 8 88 8 8#### #

5 888888 # 8 8 8 8 # 8 8888
6 # # 88 88 8 8 8
7 8 8 88 88 # 8 8
8 S 8 # 8 8 8888888 88888 88888

9 888888
10 8 8 #8 8 8 88888 8888 8 8
11 8 8 8 8 ## # # 8 # 8 8# 88
12 88888 8 8 8 8 8 8 # 8 8 88
13 8 8 888888 8 8 8 8 8 8 8 8
14 8 8 8 8 8 88 8 8 8 8 8 8
15 8 8 8 8 8 8 88888 8888 8 8

16 8 8
17 88 8 8 # 88888 88888 88888
18 8 8 # 8 # 8# 88 8 8 8 8 8
19 8 8 8 8 8 8888 88888 88888 8 8
20 8 8 8 8 8 8 8 8 8 88888
21 888 88 88 88 8 8 S
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22 S 8 5III 8 # IeIse IsIesI I 5

23 I#III
24 I S l*5lll 0 I seesl. sees S ## *ssos sees 8#9##
258 l 5I 58 I s as I I I
2658585 IIIII SSI III s S I S # S S S

27S 85 8838 "SoS# elllsl s 0 stail#
28 # * 5 0 8 8 S 0 5 0 l 9 5 5 8
29 eIIeI #008#I * 5 goes## S I S I 5 5588 S 5

30 Prime modulus multiplicative linear congruential generator
31 Z[i] - (630360016 * Z[i-1]) (mod(pow(2,31) - 1)), based on Marse and
32 Roberts' portable FORTRAN random-number generator UIZAI. Multiple
33 streams (100) are supported, with seeds spaced 100,000 apart.
34 Throughout, input argument "stream" must be an int giving the desired

35 stream number. The header file rand.h must be included in the calling
36 program (*include "pmlmLcg.'h") before using these functions.

37 Usage: (three functions)

38 1. To obtain the next U(0,1) random number from the stream "stream,"
39 execute
40 u - pmmlcg.rand( stream );

41 where pmmlcgrand is a float function. The float variable u will
42 contain the next random number.

43 2. To set the seed for the stream "stream" to a desired value zset,
44 execute
45 pmmlcgrandst( zset, stream );

46 where pmmlcg-randst is a void function and zset must be a long set
47 to the desired seed, a number between 1 and 2147483646 (inclusive).
48 Default seeds for all 100 streams are given in the code.

49 3. To get the current (most recently used) integer in the sequence
50 being generated for stream "stream" into the long variable zget,
51 execute
52 zget - pmmlcg-randgt( stream );
53 where pmmlcg.randgt is a long function.

54 */
55 ginclude"p-,zlcg.h"

56 /* define the constants */
57 #define MODLUS 2147483647
58 Sdefine MULTI 24112
59 #define MULT2 26143

60 /* set the default seeds for all 100 streams e/
61 static long zrngO -
62 { 0,

63 1973272912, 281629770, 20006270, 1280689831, 2096730329,
64 1933576050, 913566091, 246780520, 1363774876, 604901985,

65 1511192140, 1259851944, 824064364, 150493284, 242708531,

66 75253171, 1964472944, 1202299975, 233217322, 1911216000,

67 726370533, 403498145, 993232223, 1103205531, 762430696,
68 1922803170, 1385516923, 76271663, 413682397, 726466604,
69 336157058, 1432650381, 1120463904, 595778810, 877722890,
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70 1046574445, 68911991, 2088367019, 748545416, 622401386,
71 2122378830, 640690903, 1774806513, 2132545692, 2079249579,
72 78130110, 852776735, 1187867272, 1351423507, 1645973084,
73 1997049139, 922510944, 2045512870, 898585771, 243649545,
74 1004818771, 773686062, 403188473, 372279877, 1901633463,
75 498067494, 2087759558, 493157915, 597104727, 1530940798,
76 1814496276, 536444882, 1663153658, 865503735, 67784357,
77 1432404475, 619691088, 119025595, 880802310, 176192644,

78 1116780070, 277854671, 1366580350, 1142483975, 2026948561,
79 1053920743, 786262391, 1792203830, 1494667770, 1923011392,
80 1433700034, 1244184613, 1147297105, 539712780, 1545929719,
81 190641742, 1645390429, 264907697, 620389253, 1502074852,
82 927711160, 364849192, 2049576050, 638580085, 547070247
83 };
84 /* e * * e***e*e****ee**ee ee*****eee***eee**ee*/

85 float pmmlcg-rand( int stream )
86 {
87 long zi, lowprd, hi3l;

a8 /* generate the next random number */
89 zi - zrng[stream];
90 louprd (zi & 65535) * ULT1;
91 hi3l ( zi >> 16 ) e MULT1 + ( loyprd >> 16 );
92 zi - ( louprd &65535 )-ODLUS ) +
93 ((hi31& 32767) << 16 )+ (hi31 >> 15);
94 if( zi < 0 ) zi +- MODLUS;
95 louprd a zi & 65535 ) * MULT2;
96 hi3l a zi >> 16 ) * NULT2 + ( lowprd >> 16 );
97 zi -( lowprd &65535) -MODLUS ) +
98 ( C hi3l & 32767 ) << 16 ) + C hi3l >> 15 );
99 it ( zi < 0) zi += MODLUS;

100 zrng[streaml = zi;
101 return (zi >> 7 1 ) + 1 ) 16777216.0;

102 }
103 ****eee********* * e***e****ee********.********e*****s***ees****
104 void plmlcg-randst( long zset, int stream )
105 {
106 /* set the current zrng for the stream "stream" to zset $/
107 zrng[stream] - zset;
108 }
109 log **ee*** eee*e*eee*e**e**oe*ee*****ee*e****ee*M***** ***ee/

110 long pmlcg..randgt( int stream )
111 {
112 /* return the current zrug for the stream "stream" */
113 return zrng[stream];
114 }
115 ** * eeee.*e*e****e*eeeeeeeeee**.e**eee******eeee**ei****e**e**e/
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Appendix G. Code Style Guide

An important issue when writing code in three different object-oriented DBMSs is

to ensure that the code is understandable. This appendix describes the style rules which

were followed during the development of source code for this research. The purpose for

these style rules was to provide consistency across the large amount of source code which

was written during this research.

G.1 Code Indentation and Spacing

All the source code used two space indentation between logical levels. No tabs were

used in any of the source code developed for this research. Whitespace in the source code,

both vertical and horizontal, was used to make the code easier to read. Figure 72 provides

a typical example of good indentation and spacing.

G.2 Naming Conventions

G.2.1 Variable and Function Names, Variable and function names contained

only small letters. Words in the names were separated by an underscore. The following

would have been valid variable or function names: start, micro-seconds. The following

would not have been valid variable or function names: Start, MicroSeconds. Invalid

names were only used if the interface to an external library required them. For example,

ObjectStore uses the name osSet for a set when it is parameterized, and os.set when

it is not. Abbreviations were used in some names. All the abbreviations used in our

development are defined in Table 91.

G.2.2 Constant Names. Constant names contained only capital letters. Words

in constant names were separated by an underscore. Capital letters were also used for

C++ enumerated types. The following would have been valid constant names: TRUE,

TOP-0FSTACK. The following would not bave been valid constant names: True, top-of -stack.

Invalid names were only used if the interface to an external library required them. Abbre-

viations were used in some constant names. All the abbreviations used in our development

are defined in Table 91.
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void stopwatch::start( )
{

DEBUGfINIT( "STOPWATCI", "stopwatch: :start" );
DEBUGOUT( "entering", 1 );

if ( gettimeofday( &start-time, (struct timezone *)0 ) ) {
fprintf( stdarr, "ERROR[stopwatch: :start] failed call to gottimeofday( )\n" );

I
clock.running w TRUE;

DEBUGOUT( spriatf( BUG, "seconds since Jan 1, 1970: %ld microseconds: %ld".
start-tine.tvsec, starttiae.tvusec ), 2 );

I

Figure 72. Example of Source Code Indentation and Spacing

G.3 Comments

Source code comments were not used to represent things which are obvious from the

source code.

G.S. 1 Module/Header Comments. The top of each module (a ". c" or ". cc" file)

and header file (a ". h" or ". hh" file) contains a comment block. The purpose of this block

was to identify the source ifie and inform a reader of any important information regarding

the entire module. All revisions made to a source Mfie are listed in the comment block.

Figure 73 shows an example of a comment block for a source file which had one revision.

G.3.2 Inline Comments. The C++ comment indicator (// a comment <eol>)

was preferred to the C comment indicators (/* a comment */) for inline comments. Ob-

viously, if the file was designed to be compiled by a C compiler this convention was not

followed.

G.3.3 Function Headers and Separator Comments. Each function was not given

a comment block but a separator was be used to make it obvious to a reader that a new

function had been started. The function separator consisted of a line of 70 "/" characters.
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stopetch. cc

Air Force Institute of Technology
Timothy 3. Halloran
20 May 1993

NOTE: many of the techniques used in this support package came from

the "Support.C" package created by Carey, DeWitt, and Naughton
for the 007 benchmark (Objectivity implementation).
[007 Benchmark COPYRIGHT (C) 1993 Carey DeWitt Naughton
Madison, WI U.S.A. ALL RIGHTS RESERVED]

Revisions:
06 Jul 19f, -TJi- Changed all the debug output to use the "debug.hh" macros.

*/

Figure 73. Source File Comment Block Example
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Table 91. Standard Abbreviations

Abbreviation Full Name

app application
db database
cb callback
config configuration
fmt format
id identifier
it Itasca
num number
ma Matisse
max maximum
min minimum
misc miscellaneous
msg message
os minimum
pos position

prev previous
proc procedure
sim ObjectStore
str string
temp temporary

For a C program a line of "*" characters inside a comment was used (the total separator

line still consisted of 70 characters).

G.4 Error Output

All error output was standardized. Error output was broken into two types: errors

and warnings. The difference between the two is that a program will exit if an error occurs,

but continues when a warning occurs. For all error output, the name of the function (or

class method) where the problem occurred appears inside brackets after the word "ERROR"

or "WARNING". Figure 74 provides some examples of error output.

G.5 Debug Output

All program debug output was standardized by using the macros in the file debug.hh

(listed in the next section). This macro package was converted from a macro package used
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VAIEEGCmLin] the random seed is 0
VAUIIG[create.connoctions] invalid query result
UWtD0[stopwatch: :start] failed call to gettimeoday( )

Figure 74. Examples of Program Error Output

[Eool: :oo1(ool.cc:326)] entering
[dice: :dice(dice.cc:31)] entering
[ool: : forward-traversal (ool. cc: 128)] entering
[stopwatch: :stopvatch(stopwtch.cc:80)] entering
[stopwatch:: start (stopwtch.cc :37)] entering

[stopwatch::start(stopwtch.cc:44)] seconds since Jan 1, 1970: 742061664
[dice: :rofl(dice.cc:38)] entering

[dice::roll(dice.cc:44)] result 324
[part : :forward-traversal(part.cc:57)] entering
[part::forward-traversal(part.cc:59)] part id 324 (level 0)
[part: : forward.traverual(part. cc: 57)] entering
[part::forward-traversal(part.cc:59)] part id 325 (level 1)
[part: : forward.traversal (part. cc :57)] entering
[part::forward.traversal(part.cc:59)] part id 406 (level 2)

Figure 75. Example of Debug Output

by Microsoft [27]. The macros were intended to provide run-time tracing for programs

developed for the Microsoft Windows environment and were modified so they could be

used for this research. The advantages of the macro package are the following: it does not

require a debugger, it is controlled by environment variables, and its debug code can be

compiled out when debugging is finished.

Debug output consists of two parts: a location and a message. The location consists

of the function name where the debug was output, the name of the source file which

contains the function, and the line number inside the source file where the debug output

line was located. This information is inclosed in brackets. The message contains the debug

information which is to be output and is allowed to be in any format desired. Figure 75

shows an example of program debug output.

G.5.1 debug.hA. The source code for the file debug.hh is listed below.

I #ifndef __DKDVGHR
2 *define ._DKDUG-MH
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3 /I

4 688686
56 6 884M 6 6 6 866

7 6 # 86 88 6 6 6

98 • 8 •8 •

10 668666 6 6 OW86 668

11 debugh

12 Air Force Institute of Technology
13 Timothy J. aelloran
14 06 Jul 1993

15 NOTE: the basic ideas in this file came from "Debugging Without Debuggers"

16 Microsoft Systems Journal Vol. 8, Mo. 4, April 1993, Pages 52-56.

17 Sam useful debugging macron which are controlled by environment variables.

18 Revisions:
19 26 Jul 1993 -TJH- Changed the DEBUG_.IIT macro to locally declare the

20 "location" variable. This variable was being overwritten

21 by the debug code inside functions which were called from

22 inside a function using debug output.

23 */
24 Sifdef DEBUG
25 linclude<stdio.h>
26 Sinclude<stdlib.h>
27 static ant debug.level - 0;

28 static char BUG[300]; /I a buffer for use by "sprintf( )" e/

29 /I
30 DEBUG-INIT (macro)

31 env (char*) Contains the name of the environment variable
32 which turns tracing on or off for the function.
33 current.location (chare) Application defined location information (such
34 a. the name of the current function being

35 traced).

36 5/

37 *define DEBUG.lriT( env, current-location ) \
38 char *location a current.location;
39 {
40 if ( getenv( env ) M- NULL )
41 debuglevel - atoi( getenv( env ) ); \
42 else

43 debug-level - 0;
44)

45 /*
46 DEBUGOUT (macro)

47 out (char*) The message to be output.

48 level (int) The trace level at which this message is output.
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49 .
60 Odeziae DEBUGOU'r( out, level ) {
51 if ( debu-level >- level )
52 fpriatf( atdewr. "1.[%(s:lU)] s\&", location. \
53 __FIL _,_LINE--, out );
54 )

65 0else

56 /0 compile out all trace inastructionas, if DEBUG is not defined 0/
57 $efine DEBUGI.IT( env, currantJ.ocation )
58 Sdefzie DEBUGOUT( out, level )

59 #*ndif DEBUG
60 Sondif __DEBUG_.U
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Appendix H. Benchmark Source Code

The source code for all the benchmark implementations created for this research is

available in AFIT Technical Report AFIT/EN-TR-93-09 [161. The source code was not

included in this thesis due to its size. The technical report contains source code for the

following benchmark implementations:

"* Itasca DBMS implementation of the 001 benchmark

"• Matisse DBMS implementation of the 001 benchmark

"* ObjectStore DBMS implementation of the 001 benchmark

"* ObjectStore DBMS implementation of the Simulation benchmark

"* A non-persistent implementation of the Simulation benchmark (in the C++ pro-

gramming language)
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